
4102 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

SEAL: User Experience-Aware Two-Level
Swap for Mobile Devices

Changlong Li , Member, IEEE, Liang Shi, Yu Liang, and Chun Jason Xue

Abstract—App caching is important for mobile devices, which
enables fast switching and state restoration of apps by caching all
the pages in memory. Memory swapping can improve app caching
capability by evicting pages to the secondary storage. However,
enabling memory swapping could induce jitters in interactions,
which significantly degrades the user experience. As a result,
storage-based swapping is disabled by default in most mobile
devices. This article proposes a novel swap framework, SEAL, a
user experience-aware two-level swapping, which maximizes the
benefits of memory swapping and minimizes the negative impact
on user experience in interactions. Inspired by a study on the
access characteristics of a set of popular apps on mobile devices,
the framework adopts compressed memory as the first swap level
(SL1) and secondary storage as the second swap level (SL2).
To optimize user experience comprehensively, three schemes are
proposed. First, a novel page identification scheme is proposed
to guide the page placement between these two levels. Second, a
hidden page loading (HPL) scheme is proposed to load pages from
SL2 to SL1 for optimized user experience during app execution.
Finally, an app-granularity swapping scheme is proposed to swap
data in the unit of apps. Experiments on real devices show that
app caching capability is improved by 2.43× on average when
enabling SEAL while minimizing the negative impact on user
experience.

Index Terms—App caching, memory management, mobile
system, swap, user experience.

I. INTRODUCTION

MOBILE devices play an important role in everyone’s
daily life. To achieve fast switching and state restora-

tion, apps are cached by maintaining all of their pages in the
main memory. App caching requires a significant amount of
memory resources. However, memory capacity is often con-
strained in mobile devices, as it results in high costs and poor
energy efficiency [1]. Memory swapping could be an effec-
tive approach to resolve the conflict between app caching

Manuscript received April 17, 2020; revised June 17, 2020; accepted
July 6, 2020. Date of publication October 2, 2020; date of current version
October 27, 2020. This work was supported in part by the grant from the
NSFC under Grant 61772092, and in part by the Research Grants Council of
the Hong Kong Special Administrative Region, China under Project CityU
11219319. This article was presented in the International Conference on
Embedded Software 2020 and appears as part of the ESWEEK-TCAD special
issue. (Corresponding author: Liang Shi.)

Changlong Li is with the School of Computer Science and Technology,
East China Normal University, Shanghai 200241, China, and also with the
Department of Computer Science, City University of Hong Kong, Hong Kong.

Liang Shi is with the School of Computer Science and Technology,
East China Normal University, Shanghai 200241, China (e-mail:
shi.liang.hk@gmail.com).

Yu Liang and Chun Jason Xue are with the Department of Computer
Science, City University of Hong Kong, Hong Kong.

Digital Object Identifier 10.1109/TCAD.2020.3012316

and limited memory capacity [2]. By swapping out infre-
quently accessed pages to secondary storage, memory pressure
is effectively alleviated.

Several works target swap mechanisms on mobile devices.
For instance, MARS [3] is designed to speed up app launching
through flash-aware swapping. It isolates garbage collection
(GC) from page swapping and employs several flash-aware
techniques to speed up app launching. SmartSwap [4] presents
a prediction-based process-level swap mechanism. In their
design, victim processes are swapped to Flash ahead-of-time,
which significantly improves efficiency. However, when swap-
ping is enabled, the user experience during app execution will
be seriously impacted, which is overlooked by existing works.
Specifically, many perceptible display jitters are detected when
an app is used. As revealed in ProfileDroid [5], the interaction-
intensive apps may generate more than 20 input-events per
second during execution. It results in more than 30% time for
human-screen interactions when using apps, such as browsing
and gaming.

Frame rate plays an important role in the user-device
interaction experience. In general, drawing 60 frames per sec-
ond is required to fulfill a smooth experience based on human
sensitivity [6]. An important metric, “interaction alert” has
been used to measure user experience based on frame rate
detection. An interaction alert is defined as an event that one
frame rendering takes more than 16.6 ms [7]. Maintaining
a low interaction alert rate is critical to enhancing the user
experience. The study in this article finds that the number of
interaction alert increases significantly when memory swap-
ping is enabled. This is because the swap induced I/O pressure
could lead to task suspensions. As the commonly deployed
storage medium, the I/O speed of Flash, including UFS and
eMMC, is still the performance bottleneck in most mobile
systems [8]. Due to these issues, enabling swapping without
affecting user experience is a challenge for mobile devices.

This article proposes a novel framework, SEAL, a user
experience-aware two-level swap for mobile devices. The
design of the framework is inspired by our study on the access
characteristics of a set of popular apps. The study shows an
interesting observation: only a subset of memory pages is
required during app launching, while more pages are needed
during the app execution phase. Based on this observation, the
framework reorganizes the conventional swap partition (SP)
into two levels: 1) SL1 and 2) SL2. SL1 is designed with the
main memory based on compression, and SL2 is designed with
the secondary storage. Data accessed during app launching is
placed in the first level, and data accessed during app execution

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4042-6538

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4103

is placed in the second level. Since the first level is fast enough
without I/O, it can be accessed very fast. However, to access
the second level, the user experience impact will need to be
considered. To ensure smooth user experience, several chal-
lenges are addressed in the design of this framework: first,
the data placed in SL1 should be identified ahead of time.
Second, if data is read from SL2, its access should be well
controlled to reduce interaction alerts. Finally, the performance
of data migration between SL1 and SL2 should be optimized.
Solving the above challenges, this article makes the following
contributions.

1) The user experience of mobile devices is analyzed with
and without swapping. A set of popular apps is studied
with their access characteristics on the SP.

2) A novel data identification scheme is proposed to deter-
mine the placement of data between two levels of the
SP. By identifying and placing the data requested during
app launching at SL1, the launch time user experience
is optimized.

3) An HPL scheme is proposed to minimize the impact of
I/O requests from SL2. By overlapping the app launch-
ing latency with data loading from SL2, the execution
time user experience is optimized.

4) An app-granularity swapping (AGS) scheme is proposed
to control the swap operations. Based on this technique,
pages belonging to an inactive app can be swapped in
batch, which effectively improves the I/O throughput
between SL1 and SL2.

5) Experiments on real devices show that app caching capa-
bility is improved by 2.43× on average when enabling
SEAL. Meanwhile, the interaction alerts are reduced by
76% compared with the state-of-the-art.

The remainder of this article is organized as follows.
Section II presents the background and user experience
analysis. Section III presents SEAL overview. The design
and implementation details are presented in Section IV.
Experiments are presented in Sections V and VI. Related
works are presented in Section VII. Finally, this article is
concluded in Section VIII.

II. BACKGROUND AND PROBLEM STATEMENT

This section first introduces the background of app caching
and swap mechanisms in mobile devices. Then the user
experience with and without memory swapping is analyzed,
respectively. Finally, the technical challenges are discussed.

A. Background

1) App Caching and Warm Launching: Mobile platforms
prefer to cache apps in memory when switching them to the
background, rather than release their pages straightforward.
This app caching feature makes it possible to warm launch
instead of cold launch an app. When launching an app after
a boot-up, the mobile platform first creates a process for the
app, then launches UI, which is known as main activity. Such
launching style is referred to as cold launch. With app caching,
a number of apps can reside in memory after execution. A
cached app can be switched to the foreground when it is

Fig. 1. Memory swapping on the mobile platform.

launched again. Such launching style is called warm launch.
Warm launching is more friendly to users, as it avoids having
to repeat object initialization, layout inflation, and rendering.
How many apps could be warm launched from the back-
ground in maximum is always adopted to assess app caching
capability of a mobile device.

App caching and warm launching bring benefits from three
aspects. First, the launching speed of an app is significantly
improved. More importantly, app caching makes it possible
to maintain app states, such as play progress of YouTube or
navigation record of Google Maps. Mobile systems, such as
Android manages the life cycle of every app and provides
APIs to save the app-specific state. These states can be used to
restore the app during warm launching, as corresponding pages
are not released from memory. In addition, the warm launch-
ing is more energy efficiency. As a result, the app caching
capability has become an important metric of mobile devices.

2) Mobile Memory Swapping: Memory swapping extends
the volume of memory by allocating an additional partition
at secondary storage. The architecture is as shown in Fig. 1.
Based on this technique, the mobile system can evict the pages
of background apps from physical memory to the SP, or bring
the requested pages back. The process of page evicting from
memory to partition is called swapout, and the process to
bring pages back is named swapin. The swapout operation
starts when memory is under pressure. Specifically, a kernel
thread kswapd is wakened up periodically or by page alloca-
tion to monitor the memory watermark [9]. It swaps pages out
when the size of available memory is lower than the water-
mark threshold. On the other hand, swapin is triggered when
swapped pages are requested again.

There are many strategies to select victim pages for swap-
ping. For instance, the least-recently used (LRU) policy in
Linux kernel defines LRU pages as inactive, and moves them
to the shrink-list as candidates. When swapping occurs, these
candidate pages will be evicted to the SP in priority. On the
other hand, the management of SP determines where candi-
date pages swap to. In mobile devices, Flash is the first choice
to build SP, since it is commonly deployed and its capacity
is much larger than the memory. To realize data migration
between the main memory and the secondary storage, swapped
pages are converted to bio instance, which represents an in-
flight block I/O request in the kernel [10]. These requests are
transferred to the queue in the block layer and finally submitted
to the storage.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

4104 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 2. App caching capability when enabling and disabling the swap mech-
anism. Seven apps are warm launched without swapping. x-axis represents
the ten rounds testing, and y-axis represents the number of launched app.

Memory swapping is a critical approach to enhance the
app caching capability. In original, some of the cached apps
will be killed to release space when the available memory
is exhausted. The killed apps can only be cold launched
when switched to the foreground again. Thanks to swapping,
most of app killing behaviors are avoided since the data can
be evicted out before memory exhausting. As a result, app
caching capability could be enhanced.

B. User Experience Analysis

Maintaining good user experience is often a challenge for
modern mobile devices, no matter the swap mechanism is
enabled or not. When swapping disabled, more cold launched
are needed. When swapping enabled, the warm launching rate
is increased. However, the increased I/O pressure between
memory and storage brings two additional impacts on user
experience. First, the warm launching speed is slower. What
is worse, even when an app is warm launched successfully,
it may also suffer interaction alert in the following execution.
The smooth of app usage seriously deteriorated. To under-
stand how severe the user experience problem is, this article
conducts evaluations on real-world mobile devices.

User Experience When Swap Is Disabled: This article first
evaluates whether the user experience is good enough with-
out memory swapping. In the evaluation, 30 popular apps,
including Facebook, Twitter, and Chrome are preinstalled and
repeatably launched for ten rounds. In the first round, all
apps are cold launched. In the following nine rounds, sev-
eral apps are successfully cached in memory. How many apps
are cached in each round is recorded. Both swapping enabled
and disabled cases are tested for comparison. A Linux swap
file (2 GB) is created as a partition used for swapping in the
swap enabled case. Fig. 2 shows the collected results. It shows
that when swap is enabled, around 15 apps can be cached and
warm launched. However, for the disabled case, only 7 out of
the 30 apps are warm launched from the memory. As investi-
gated, people often use 13 apps or more on a daily basis [11].
It means almost half of earlier started apps are cold launched
when restarting again, which leads to higher launch latency
and history-state loss. According to the above analysis, the app
caching capability without memory swapping cannot support
the best user experience. In conclusion, to enable swapping
on mobile systems is important in terms of user experience.

User Experience When Swap Is Enabled: This article fur-
ther explores user experience study when enabling swapping.
30 apps are repeatedly launched for experiments. Results show

Fig. 3. App launch time statistics. The warm launching speed slows down,
compared with the swap disabled case. Even though it is still faster than the
cold launching.

Fig. 4. Interaction alert statistic during app execution.

that most apps’ state is maintained by the system since the
app caching capability is significantly improved. However,
the introduced swap mechanism brings two additional prob-
lems. First, the speed of warm launching slows down. This is
because a large number of pages are read from the storage.
We measured the amount of time needed to warm launch an
app when enabling swapping. Fig. 3 shows the results for the
latency on cold launching, warm launching with and without
swap. The results show that it takes 2 − 6× longer to warm
launch an app when swap enabled, even though it is still much
faster than the cold launching.

What is worse, the user experience could be seriously dete-
riorated during app execution. Many interaction operations,
such as screen scrolling, become jerky and slow. As we know,
drawing screen frames with a consistent rate is essential for
a good experience. In general, drawing 60 frames per second
(60 fps) is required by many commercial smartphones [6]. It
is based on the human eye sensitivity. If an app drops out
of this rate, the display can become jerky or slow from the
users’ perception. To quantitatively analyze the user experi-
ence during app execution, Systrace [12] is deployed to detect
the interaction alerts. Interaction alerts happen when the time
spent rendering a frame exceeds 16.6-ms time limit required
to maintain a stable 60 fps [7]. Since the space is limited,
Fig. 4 only shows the interaction alert statistic of ten sam-
pled apps, including different types of apps. It shows that the
number of interaction alerts when enabling swap is around
six times more than the swap disabled case. Logs are traced
to assess where each interaction alert comes from. For exam-
ple, one frame spent 19.8 ms to display on the screen. It is
found that CPU takes only 4.127 ms, while more than 15 ms
is spent in the queue waiting for I/O. The time consumption
to draw a frame is significantly increased when a request I/O
cannot respond on time. To the best of our knowledge, the
swap induced interaction alert issue has not been noticed and
effectively addressed yet.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4105

In conclusion, swapping is necessary for mobile devices
since it can significantly improves app caching capability.
However, it brings two additional problems: high latency of
app launching and interaction alerts during app execution. This
article tries to enable swap and address the above issues so
that the user experience can be improved comprehensively.

C. Technical Challenges

There are two challenges to minimize user experience
deterioration when enabling swap.

1) High-volume I/O Induced High Latency When Launching
App: I/O is still the performance bottleneck in current mobile
devices [13]–[16]. This article finds that the increased warm
launching latency when enabling swapping is due to the
increase of I/O pressure. A large number of earlier evicted
pages are requested to swapin when an app is switched to the
foreground again. Existing solutions, such as LRU or least-
frequently used (LFU), select the least recently (frequently)
used pages to swap based on the usage history. Unfortunately,
there are still launch-required pages swapped out, which leads
to the I/O congestion. It is because many launching required
pages are not accessed again in the following app usage phase.
These pages are more likely to be identified as ‘inactive’ and
be evicted to the storage. According to the above analysis,
modern solutions are not friendly to the launch time user
experience.

2) Small I/O Induced Interaction Alerts When Interacting
With App: As illustrated in Fig. 4, a large number of
interaction alerts are detected during app execution. This is
because many tasks are suspended due to swap induced I/O
requests. It is too late to swapin a page when page fault has
already been triggered. It is hard to predict exactly when and
which pages will be swapped in during interaction. And rarely
used page does not mean that the page will never be accessed
again. Most requested pages are small. As detected, even a
small I/O request (4 kB) may lead to a severe user experi-
ence deterioration. This is because existing systems cannot
control the response latency of a request: too many factors
interfere with the I/O performance, such as queue in the block
layer and GC inside the storage medium. Thus, how to min-
imize interaction alerts when enabling swapping is the other
challenge to overcome.

III. TWO-LEVEL SWAP FRAMEWORK

In this section, the observation is first presented to show the
page access characteristic of each app. Then, an overview of
the two-level swap framework is described.

A. Observation

The page access characteristic of each app is observed at
first. 30 popular apps are studied on a mobile device. As shown
in Fig. 5, three types of page accesses are identified, includ-
ing launch requested, execution requested, and not requested.
Launch requested represents pages required during launch,
execution requested represents pages only required during exe-
cution, and not requested represents the pages not accessed at
all. The figure shows the statistics for the page-access ratios

Fig. 5. Ratio of launch-requested, execution-requested, and not-requested
pages.

Fig. 6. SEAL system overview.

among these three types. To ensure that all pages swapped in
are required by the app, the page prefetching mechanism in
the system is disabled. The results show an interesting obser-
vation: only a small part of pages are required during app
launching. As shown in the figure, the ratio of accessed pages
during launch is less than 40% for most apps. Considering
some requested pages may not be used, the ratio is even less.
More than 60% of pages are requested in the following exe-
cution phase, or even not accessed. This article further found
that launch-requested pages mostly stay the same during each
round evaluation, while execution-requested pages change a
lot. This is because the code path of app launching is often
stable, while the app behavior in execution is usually dynamic.
Inspired by the above observations, this section presents a
two-level swap framework to address the interaction deterio-
ration issue during app execution and while enable fast warm
launching.

B. SEAL Overview

Fig. 6 shows the overview of SEAL. In the design, the SP is
organized with two levels: 1) SL1 and 2) SL2. SL1 is designed
based on memory compression to store the data requested dur-
ing app launching, while SL2 is designed based on secondary
storage to store the other data, which may be requested dur-
ing app execution. During swapout, all data pages at these
two levels are first compressed and transferred to SL1. Then
part of them is converted to I/O requests and submitted to the
secondary storage, similar to the conventional I/O manage-
ment as introduced in Section II-A. During swapin, there are
two stages: 1) for app launching, data is accessed from SL1
and 2) for app execution, data from SL2 is loaded to SL1 for
accessing.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

4106 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

To comprehensively improve user experience, several criti-
cal issues are further addressed in the framework design. (C1)
Since SP is organized into two levels, identifying and placing
data belonging to the corresponding level is critical. (C2) It is
too late to load pages in SL2 back when they have already
been requested, since even one small I/O can significantly
affect the frame rate. (C3) The performance of data migra-
tion between the two levels should be improved. To address
the above issues, three schemes are proposed correspondingly.
First (C1), a least-launch-required (LLR) scheme is designed
to identify and place pages for SL1 and SL2. Different from
original policies like LRU or LFU, SEAL separates the pages
of each app by identifying whether it is launch-required. The
launch-required pages are locked in SL1, while other pages are
unloaded to SL2. Second (C2), an HPL scheme is proposed
to load data in advance. The timeline of page loading and
app launching is overlapped. Hidden loaded pages are not
required in the launch phase, so their impact on launch speed is
marginal. Third (C3), an AGS scheme is proposed to reduce
migration cost. Pages belonging to the same app are batch
swapped instead of one by one. In this way, the I/O throughput
is efficiently improved.

IV. DESIGN AND IMPLEMENTATION OF SEAL

In this section, three proposed schemes are presented. Then,
the implementation details of SEAL is discussed.

A. LLR-Based Data Identification and Placement

To determine the data identification and placement between
SL1 and SL2, the LLR-based scheme is proposed. The basic
idea of LLR is to differentiate the pages used during app
launching and execution. It takes app usage patterns into con-
sideration. Once identified, pages required during launch are
placed in SL1 and pages required during execution are placed
in SL2, separately.

To differentiate data pages from the launch and execution
stage, LLR is designed with list pairs. Each list pair consists
of two lists: 1) sl1-list and 2) sl2-list. SEAL creates one list
pair for each app. It is initialized instantly when an app is
successfully installed. Pages accessed during app launching
(including both cold and warm launching) are appended to
the sl1-list, while others are appended to the sl2-list. During
an app’s life cycle, the list pair is updated when app switching
happens between the foreground and background.

Algorithm 1 shows how the list pair works. If a page in the
sl2-list is required in the launch phase, it will be migrated
to the sl1-list, and its weight is set as k (lines 9–11). On
the other hand, if a page in the sl1-list is not requested, its
weight is decremented by 1 (line 13). Only when the weight is
reduced to 0, will the page be migrated to the sl2-list (lines 14
and 15). LLR gives “k-chances” to the page in the sl1-list. The
condition of migration from sl1-list to sl2-list is: one page is
not requested during launch for k times consecutively. The k-
chances strategy has two benefits. First, it prevents frequent
page migration between the two lists. Second, it ensures that
launch-required pages have a higher chance to stay in sl1-list.
SEAL prefers to lock pages in SL1, rather than unload pages

Algorithm 1 K-Chances Algorithm
Parameter:
llr_sl1_list: list of launch-required pages;
llr_sl2_list: list of lest-launch-required pages;
Procedure:

1: /* LLR lists initialization */
2: for all page[i] belonging to target app do
3: if page[i].flag! = 0 then
4: llr_sl1_list.append(page[i]);
5: else
6: llr_sl2_list.append(page[i]);
7: /* LLR list-pair updating */
8: if launchRequired(page[i]) then
9: page[i].flag← k;

10: if page[i] ∈ llr_sl2_list then
11: migrating page[i] to llr_sl1_list;
12: else
13: page[i].flag← page[i].flag− 1;
14: if page[i].flag == 0 then
15: migrating page[i] to llr_sl2_list;
16: return ;

to SL2, as the latter has a higher cost on user experience. The
migration between these two lists is not frequent since most
warm launch-required pages have already been indexed dur-
ing cold launching, only a small set of pages, such as the app
state will be newly requested.

SEAL creates one list pair for each app, instead of using one
list pair to index all apps’ pages due to two reasons. First, if
all pages are indexed by one list in the design, app information
should be recorded on the list. It is complex and inefficient to
maintain. On the contrary, the overhead of multiple list pairs
without app information is low. Second, existing features in
kernel, such as cgroup, is more friendly to our approach. The
list pairs can be implemented with minimum kernel modifica-
tions. Based on LLR, the user experience during app launching
can be significantly improved.

B. Hidden Page Loading From SL2 to SL1

When launching an app, all required pages can be quickly
accessed from SL1, while many pages need to be loaded
back from SL2 during the following interaction. As intro-
duced above, I/O induced by swap can significantly increase
the interaction alert. It will be ideal that all pages will be
ready in SL1 when the app starts execution. This inspires the
design of HPL from SL2 to SL1. The main idea of HPL is
to load all the pages back when an app is switched to the
foreground. The page loading overlaps with the time window
of app launching, so the loading process is user impercepti-
ble. The time window is defined as the time interval from the
start to the end of an app launching (T1 to T3 in Fig. 7). The
process of HPL is as follows. First, an app is launched at T1.
During this stage, the data pages are read from SL1 to launch
the app quickly. Second, once the app is activated to launch,
the execution-required data placed in SL2 is ready and read
to SL1 at T2. There is a time gap between T2 and T1 for the
activation of page loading. A worker thread is created to load
the pages in parallel. Third, before the app is launched at T3,
the data loading from SL2 to SL1 is finished and ready for

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4107

Fig. 7. HPL from SL2 to SL1. Pages belonging to an app are prefetched,
by overlapping with the time window of app launching. The loading process
will be completed before the end of app launching.

following execution. All launch-required pages are placed in
SL1 and do not need to be loaded by HPL, and thus HPL has
a small impact on launch speed.

This technique is not simple since there are still two chal-
lenges to overcome. First, the time cost of page loading should
no bigger than that of app launching, as presented at T3 in
Fig. 7. Supposing it takes 600 ms to launch an app, but loading
all its pages back needs 1 s. In this case, the user experience
after launching will be dramatically deteriorated. To avoid such
case, the number of pages placed in SL2 for each app should
be precisely calculated. Second, SEAL induced I/O requests
could compete with other I/O requests. To avoid I/O compe-
tition, the I/O flow between SL1 and SL2 should be carefully
managed. To solve the above challenges, two techniques are
presented as follows.

1) Time Cost Model: To overcome the first challenge, a
time cost model is provided. This model is responsible to cal-
culate the peak data size for SL2 for each app. It estimates
the peak size as a function of launching time-window, I/O
throughput (Kbps), and coefficient µ. Assuming the time win-
dow of appi is Twi, and I/O throughput is detected as TH. The
peak size (PSi) allowed to swap to SL2 is

PSi =
⌊

µ× Twi × TH

4KB

⌋
. (1)

This model is calibrated dynamically. The value of Twi

is calculated based on appi’s launching latency in history.
Another important value, I/O throughput TH, is measured by
the workloads with various request sizes. Since the through-
put is impacted by many factors, such as the frequency of
GC, page erasure event, and queue length in the block layer,
this value is detected in real-time. Next, µ is a configurable
coefficient from 0 to 1 to tolerance the bias of throughput and
time-window prediction. The motivation of µ is to provide a
safe margin. If an app spent 1 s to startup, it is safer to com-
plete hidden loading within 0.8 s instead of 0.99 s. The above
design is conservative in determining the size of data placed
in SL2. With this model, the data in SL2 can be loaded to
SL1 on time during app launching.

2) I/O Flow Control: The SEAL induced I/O may com-
pete with other I/O. The competition leads to two problems.
First, the page loading operation may be interrupted when I/O
is congested. As a result, the efficiency of page loading can-
not be ensured well. Second, the page unloading operation
may interrupt other I/O requests, which is unfriendly to the
user experience either. To avoid these problems, the I/O flow
between SL1 and SL2, including page loading and unloading

is controlled. Specifically, page loading (SL2 to SL1) induced
I/O request has a high priority and thus can be quickly loaded
back. To achieve this goal, requests generated by SEAL are
marked. Note that the data loaded back to SL1 is still in a com-
pressed state and will be decompressed when it is requested.
If no available space in SL1 to support page loading, or the
total amount of launch-required pages of all the victim apps
are more than the size of SL1, the app killing mechanism
will wake up to release space. Page unloading (SL1 to SL2)
is executed in the background. Moreover, to avoid its impact
on the others, especially the foreground apps, page unloading
induced I/O request has a low priority. Thus, different from
page loading, the unloading operation will suspend as soon as
other requests are submitted.

In summary, the HPL and earlier presented LLR can
improve the user experience during app launching and exe-
cution, respectively. LLR is designed to support the fast app
launching, and HPL is used to maintain a high frame rate dur-
ing app execution. However, with the above two schemes, the
app caching capability is sacrificed. The reasons come from
two aspects: first, the data amount allowed to unload to SL2 is
limited by the peak size presented in (1). If this is violated, the
loading latency will exceed the app’s time window. Second, to
support fast app launching, the launch-required pages are not
allowed to be unloaded to SL2 based on the design of LLR.
Due to the above two reasons, the total amount of data that can
be swapped to the secondary storage is limited. Thus, the app
caching capability will be sacrificed. To compensate for the
app caching degradation caused by the above two techniques,
this article further proposes an AGS scheme.

C. App-Granularity Swapping

The basic idea of AGS is to swap pages belonging to
the same app together. Under AGS, candidate pages are also
compressed and transferred to SL1 at first, then the launch
unrequired pages are further evicted to SL2. AGS improves
app caching capability from two aspects. First, since pages
belonging to an app are handled together, it is possible to
unload them from SL1 to SL2 in batch, which significantly
improves the I/O throughput. As a result, more pages are
allowed to place to the storage, as presented in (1). Second,
AGS is more aggressive than original swapping: it swaps all
pages of a selected app out without constrained by the memory
status. Specifically, original swapping operation can be pre-
vented when the released memory exceeds a threshold (as
mentioned in Section II-A). On the contrary, AGS will not
stop until all pages of an app are evicted. In the following,
this article presents how an app’s pages are tracked and batch
swapped and which app should be selected as a victim.

1) App-Granularity Batch Swapping: The first challenge
to realize app-granularity batch swapping is page tracking for
each app. Fig. 8 illustrates how pages of an app are tracked.
First, each app is uniquely identified by its package name
(PKN), which is unique among all apps installed on the mobile
platform at a given time. So PKN is used to identify app.
During the life cycle of an app, many processes may be gen-
erated. The second step is to obtain the process IDs (PIDs) of

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

4108 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 8. AGS. Pages belonging to an app are tracked and swapped together.

a given app. Then, pages belonging to each process are further
traced. The mapping between app and processes is maintained
in PKN-PID mapping. Third, each process is represented by
task_structure. It further points to mm_struct, which
describes the memory context of the process. In this structure,
many virtual memory areas (VMAs) are defined. With the help
of the VMA information, corresponding page addresses can be
obtained. Thus, all pages belonging to a given app are tracked.

The tracked pages are compressed and placed at SL1. When
unloading the LLR pages to SL2, they are handled in the stor-
age stack in batch. Specifically, swap induced I/O requests
are merged to a bigger request when they are waiting in the
block layer. The maximum amount of data carried by a merged
request is set to 1MB. This size aligns with the maximum bio
size supported by Linux kernel. In this way, most overhead in
storage stack is avoided and the throughput is significantly
improved. Note that the above scheme also works for other
operating systems. This is because the process and memory
management schemes are similar.

The other challenge of app-granularity batch swapping is
to break the boundary of the kernel and user space. Taking
Android as an example. Processes are managed as the basic
unit in kernel, while apps run in the user space (managed
by the Android framework). This article addresses this issue
by adopting sysfs. The sysfs file system is mounted on/sys.
Sysfs provides functionality similar to the sysctl mechanism,
where the former is implemented as a virtual file system.
SEAL supports app information transferring across space by
writing protocol string to/sys files. For example, the time
window of app launching can be transferred to kernel by
“$echo 600 ms >/sys/seal/tw”. In the design, information is
transferred from user space to kernel, instead of the opposite
direction. Meanwhile, all features in the user space are encap-
sulated as system components, and no interface is provided to
the end user. Thus, the security of SEAL is well protected.

2) Victim App Selection: Now we discuss how to select
the victim app. Unlike most previous work which predicts
the most likely to be used apps. In our design, AGS needs
to select victim apps to swap out. Thus, we prefer to predict
the most rarely used apps. This article exploits the process-
priority management in the native kernel to realize victim app
selection. We first describe the design detail, then explain the
advantages of the design.

There are many processes managed by the system. Each
process is assigned with a priority by the system to determine

Algorithm 2 Victim App Selection Algorithm
Input: pkn_array: package name array of cached apps;

pp_map: the mapping between pkn and pid;
Output: pkn[index]: pkn of the selected victim app;
Procedure:

1: Initialize max-priority (mp) and average-priority (ap);
2: for pkn[i] in pkn_array do
3: pkn[i].mp← Highm

j=0pkn[i].get_prio(pid[j]);
4: pkn[i].ap←∑m

j=0 pkn[i].get_prio(pid[j]);
5: /* Select the pkn with lowest mp as victim */
6: if pkn[i].mp > LP then
7: LP← pkn[i].mp;
8: index← i;
9: /* Select the pkn with lowest ap as victim */

10: else if pkn[i].mp == LP then
11: if pkn[i].ap > pkn[index].ap then
12: index← i;
13: else if pkn[i].ap == pkn[index].ap then
14: index← Random(index, i);
15: /* Return victim pkn index from the function */
16: return index;

how much CPU or processor time is allocated. The priority
of each process is managed by the native system. Since apps
are made up of processes, it is possible to represent an app’s
activity by process priority. In the design, the activity of an
app is defined based on the priority of its processes. As shown
in Algorithm 2, a victim app is selected based on max-priority
(MP) and average priority (AP). The MP is set as the highest
priority of its processes (line 3). When swapping is initiated,
the app with the lowest MP is selected as the victim. In case
that some apps may have the same MP, AP is defined. The AP
of an app stands for the average value of its process priorities
(line 4). If more than one app have the lowest MP, SEAL fur-
ther compares their AP. The app with lower AP will be evicted
(lines 5–12).

The process priority is utilized to select the victim app for
two reasons. First, by applying the original priority manage-
ment in the native system, the overhead of AGS is significantly
reduced. Second, many existing features, such as low memory
killer (LMK [17]) and out of memory killer (OOMK [18])
are also designed based on the process priority management.
Sharing the same priority system in memory management
instead of building a new one can avoid potential conflicts.

D. Implementation

To deploy SEAL on off-the-shelf devices, there are a couple
of implementation details to be addressed.

1) SEAL Swap Engine: A swap engine is implemented to
determine when should pages be swapped out and when should
pages be swapped back. To achieve this goal, the contextual
information is taken into account, including launching latency
and I/O traffic. The condition to trigger swapin and swapout
is different. Swapin: The process of page swapin is split into
two phases: 1) page loading from SL2 to SL1 and 2) page
decompression from SL1 to the main memory. Page loading
occurs when app launching is detected. This is a pro-active
action. All pages are loaded back, no matter whether they are

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4109

needed right away or not. On the contrary, the page decom-
pression is a passive action. It will not happen until the page
in SL1 is indeed requested. Only the requested page will be
decompressed to the main memory.

Swapout: The process of page swapout is more complicated.
It is split into two phases also: page compression from the
main memory to SL1, and page unloading from SL1 to SL2.
When the watermark threshold is exceeded, as introduced in
Section II-A, a victim app will be selected and compressed
to SL1. SEAL prefers to unload pages from SL1 to SL2 as
soon as possible, rather than wait for the SL1 space to fill out.
To avoid I/O congestion, the I/O traffic is monitored. If I/O is
busy (IOPS higher than a predefined threshold), the unloading
operation will suspend. When the I/O pressure reduced (e.g.,
the screen turned off), the unloading procedure will continue.
Pages in SL1 will not be released until page unloading com-
pletes. If an app is switched to the foreground at the time of
page unloading, the unloading operation of this app will be
canceled.

2) Two-Level SP Management: Implementation of the two-
level SP management is presented in this section. SL1 is
deployed in physical memory as a dedicated RAM disk. In
this approach, the compression technique, lzo, is deployed.
Candidate pages are compressed to this mounted RAM disk.
SL2 is generated by creating a new partition on the Flash.
Specifically, the source code of ptable.img is modified. After
porting the recompiled image to the mobile device and reboot-
ing, a new virtual block device can be seen in the directory
“/dev/block”. SEAL unloads the compressed pages from SL1
to SL2 by identifying this newly generated virtual block
device.

Page migration between the two levels takes place fre-
quently, so effectively page indexing is the other challenge of
SP management. In the implementation, flags L1 and L2 are
maintained to index pages located in SL1 or SL2, respectively.
Page table entry (PTE) records the information of swapped
pages. When a page is compressed to SL1 or unloaded to SL2,
the content of PTE is updated to reflect the change. Original
swap related code and corresponding mapping table are modi-
fied to support the two-level page indexing. Specifically, when
a page locates in SL1, the address bit of PTE is set as L1. An
array, table[index].handle, is maintained to record the
start address of the page locate in the RAM disk and the off-
set. The start address and the offset in storage are recorded
in the mapping table. For example, to index a page during
unloading, four steps are performed.

1) Encapsulating candidate pages to I/O requests and merg-
ing them in the queue.

2) Calling write interface to submit the I/O requests.
3) Changing the address pointer from SL1 to SL2 when

the request completed successfully.
4) Updating PTE and releasing the space in SL1.

The address information is maintained throughout the whole
process.

SEAL is implemented on real-world mobile devices, with
both user-space and kernel-space modifications. The modifi-
cation consists of 2864 lines of code (1136 lines of C/C++
and 1728 lines of Java), excluding the libraries.

Fig. 9. Evaluation platform. SEAL is deployed on Hikey 970 platform. The
laptop controls app behavior. The app launching and execution process is
displayed on the screen.

V. EXPERIMENT SETUP

A. Evaluation Platforms

The experiments are performed on Hikey 970 [19] plat-
form, which is equipped with HiSilicon Kirin 970 Core,
6-GB DDR4 RAM, and 64-GB UFS2.1 Flash. Android 9.0
and Linux kernel 4.9 are deployed on the device. Fig. 9
shows the experiment environment. During the evaluation, two
tools are adopted: 1) Android Debug Bridge (Adb [20]) and
2) UI/Application Exerciser Monkey (Monkey [21]). Adb is a
versatile command-line toolkit, which is used to startup apps,
identify their launch styles, and record the launch latency. For
example, an app can be startup by command “$adb shell am
start -W.” Monkey is adopted to simulate app execution. It gen-
erates pseudo-random streams of user events, such as clicks,
touches, or gestures, as well as a number of system-level
events. To run this tool, the app’s PKN and the total number of
user events that we want to generate are provided. Then ran-
dom events on UI elements will be generated automatically.
Based on Adb and Monkey, all app behaviors, including both
launch and execution, can be effectively controlled.

B. Evaluated Workloads

There are 30 applications deployed on the platform. As
shown in Table I, these apps covered multiple categories,
including social network, multimedia, game, electronic com-
merce, and utility. The characteristics of workloads are dif-
ferent, such as memory usage size, the ratio of launch
-(un)required pages, and the sensitivity to launch latency as
well as interaction alert. For example, 87 MB is needed to
launch Ebay as measured, but it takes more than 200 MB
to launch “Arena of Valor,” a popular mobile game. Since
almost 3-GB space is occupied by the mobile system, only 3-
GB DRAM is left to the workload apps. Thus, the workload
is big enough to perform the memory pressure tests.

C. Evaluated Schemes

Five schemes implemented and measured to show the
effectiveness of SEAL.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

4110 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

TABLE I
WORKLOAD APPLICATIONS

1) No-SWAP: This is the baseline of the evaluation. All
swap features in the system are disabled. Including
both storage-based-swap [3] and compression-based
swap [22]. All cached pages are placed in the physi-
cal memory in this case. When the memory is under
pressure, available memory will be released by killing
some apps instead of evicting some pages to an SP.

2) ZSWAP [23]: The basic architecture of this scheme is
close to SEAL. It deploys “two-level” SP: a dedicated
RAM disk in the physical memory as the first level and
generates a swap file on storage as the second level.
When a swap operation is performed, all pages are first
compressed to the first level. Then, rarely accessed pages
in the RAM disk are transferred to the swap file in the
background.

3) LLR: This scheme represents the proposed LLR page
identification scheme. The basic idea of this scheme is
to differentiate the pages used during app launching and
execution. It redefines the placement of swapped pages.

4) LLR+HPL: This scheme is to combine LLR and HPL,
which represents the HPL scheme in Section IV-B. HPL
loads all pages back when an app switched to the
foreground. The page loading overlaps with the time
window of app launching, so that this prefetch process
is user imperceptible. Combining LLR and HPL, both
the launch latency and execution time user experience
will be improved.

5) SEAL: This is the proposed framework, which combines
the LLR, HPL, and AGS schemes. Among them, AGS
performs memory swapping in app granularity. All pages
belonging to the same app are swapped together, instead
of page by page. In this way, SEAL is able to improve
the app caching capability.

VI. EXPERIMENT RESULTS AND ANALYSIS

A. User Experience Improvement

Three metrics are analyzed for the user experience evalu-
ation: 1) warm launching latency; 2) interaction alerts; and
3) app caching capability. Thus, the user experience improve-
ment of SEAL can be verified in three aspects. First, warm
launching latency is evaluated to show the advantages of LLR,
as LLR places launch-related data in SL1 to enable a fast app
launching. Second, interaction alert is evaluated to measure

Fig. 10. Warm launching latency.

the benefit of HPL. As HPL loads the app execution needed
data during app launching time, interaction alerts should be
significantly reduced. Finally, the app caching capability is
evaluated to verify the benefits of AGS. AGS will handle
swaps in batches and optimize data transfer between SL1 and
SL2. In this case, more data can be swapped to SL2, and the
app caching capability can be optimized.

1) Warm Launching Latency: To collect warm launching
latency, warm launching is executed for ten times for each
scheme and the average is recorded. Fig. 10 shows the warm
launching latency of the five evaluated schemes. The base-
line scheme NO-SWAP achieves the best launch speed with
526 ms, on average. This is because NO-SWAP launches
the app from the main memory. The state-of-the-art scheme
ZSWAP has the worst launch speed with 1443 ms. This is
because ZSWAP does not differentiate whether the data is
launch-required or execution-required. It needs to read data
from the swap area in the secondary storage to launch the
app.

The proposed LLR is able to significantly reduce the launch
latency compared to ZSWAP. This is because LLR is designed
to identify the launch-related data and place them in the
memory-based swap. In this case, during app launching, the
app will be launched from the main memory. Hence, the warm
launching related user experience is significantly improved.
However, the results also show that the warm launching
latency of LLR is higher than that of NO-SWAP by around
17%. The reason for the increase is from the decompression
induced cost. In the proposed scheme, the data placed in SL1
is compressed for memory efficiency. By adding HPL, the
warm launching latency is further increased. This is because
HPL is designed to load the execution time data from SL2
to SL1 during app launching. As discussed in Section IV-B,
with this approach, the data loading from SL2 to SL1 dur-
ing app launching may interference with the process of warm
launching from SL1. From the results, the warm launching
latency is marginally increased by around 10%. Compared
with ZSWAP, the warm launching latency is still significantly
improved. Finally, by adding AGS, the warm launching latency
is improved compared with HPL. The reason comes from
that AGS is designed to batch process the swap. Then, the
interference can be well controlled. The results show that the
proposed SEAL has similar warm launching latency to that
of LLR.

2) Interaction Alert: The interaction alerts are measured to
verify whether user experience is improved during app execu-
tion. In the evaluation, Android Monkey is utilized to simulate
interaction. In the simulation, various interaction events are
generated. The impact on user experience during app execu-
tion is detected by recording the number of interaction alerts.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4111

Fig. 11. Interaction alerts.

Fig. 12. Interaction alerts number of tested three cases. The interaction alerts
of SEAL are effectively controlled.

One event generated by the Android Monkey contains an
interaction operation, including scrolling the screen, clicking a
button, or opening a new window. To evaluate the interaction
alert induced user experience impact, 500 events are created
when running the Android Monkey. Systrace is utilized to
record the interaction alerts number during the above events.

Fig. 11 shows the collected results. There are several obser-
vations are uncovered based on the results. First, the number
of interaction alerts for NO-SWAP is very small. This is
because the execution time accessed data locates in the main
memory. Second, for ZSWAP, its interaction alerts are sig-
nificantly increased by more than 4 times. This is because
it needs to access a lot of data during execution from the
secondary storage. Third, similar to ZSWAP, LLR also has
a significant amount of interaction alerts. The reason is the
same as the ZSWAP. More importantly, LLR is designed to
place the data used during execution at SL2. In this case,
the user experience during execution is significantly degraded.
Forth, by adding HPL, the interaction alerts are significantly
reduced compared with ZSWAP and LLR. This is because
HPL is designed to preload data from SL2 during app launch-
ing. Finally, SEAL maintains similar interaction alerts as that
of LLR+PHL. In conclusion, the evaluation results show that
the number of interaction alerts of SEAL is effectively con-
trolled. It is close to the NO-SWAP case, which is only 14%
increase, and reduced by 76% compared with ZSWAP.

To show more details and the robustness of the proposed
scheme, we further analyzed the interaction alerts with dif-
ferent numbers of events, including 10, 100, 500, 1000, and
10000, respectively. Fig. 12 shows the results. The results
show that the proposed scheme is able to significantly reduce
the number of interaction alerts. More importantly, with
the increases in interaction numbers, the alerts are slightly
increased and approach the No-SWAP.

3) App Caching Capability: Fig. 13 shows the app caching
capability among the evaluated schemes. Only 7 of 30 apps
are warm launched with NO-SWAP due to the limited main

Fig. 13. App caching capability.

Fig. 14. App caching benefit. x-axis represents the ten rounds test, and y-axis
represents the ratio of cold and warm launching.

memory size. As a comparison, more apps can be cached when
enabling ZSWAP. Specifically, 15 apps are warm launched on
average. Then the proposed three schemes are tested. LLR
is able to improve the app caching capability compared with
NO-SWAP due to that it proposes to store some data to SL2.
However, the capability of LLR+HPL is slightly degraded
compared with LLR. This is because HPL limits the size of
data stored in the SL2. Finally, by adding AGS, the capa-
bility is significantly improved and better than that of the
NO-SWAP (2.43×) and ZSAWP (1.13×) case. Log analysis
illustrates that it is because of the efficiency of AGS. Pages
are swapped out on time. On the contrary, several apps are
killed before completing the swap operation in the ZSWAP
case. Fig. 14 shows detail results on the app caching capa-
bility among the ten arounds. The results confirm that SEAL
consistently improve the app caching capability.

B. Sensitive Studies

To further understand SEAL, several sensitive studies are
conducted in this section, including the size of SP, the k-chance
algorithm, and the coefficient µ in (1).

1) Swap Partition Size: The user experience benefit of
SEAL is impacted by the SP size. In this evaluation, we
dynamically changes the size of SL1 (from 64 MB to 1 GB)
and SL2 (from 256 MB to 4 GB). Fig. 15 shows the results.
Two conclusions are obtained. First, the app caching capabil-
ity increased with the expansion of SL1 and SL2. However,
it is not increased linearly. When the size of SL2 raised to a
peak size, the number of cached app will not increase again.
This is because no enough pages are allowed to swap to SL2.
Second, the size ratio of SL1 and SL2 have an impact on
the app caching capability. This is due to the relatively sta-
ble ratio of app launch-required and not required pages. For
example, in the (SL1-256MB, SL2-512MB) case, around six
apps are swapped to the partition. However, only two apps are
swapped in the (SL1-64MB, SL2-4GB) case, as SL1 becomes
the bottleneck.

2) K-Chances Impact: The k-chances algorithm of LLR
determines the page migration between sl1-list and sl2-list.
In this evaluation, we configure the value of k from 1 to 6 to

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

4112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Fig. 15. App caching capability improvement when SP size is varied.

Fig. 16. Relationship between app caching and interaction alert by varying
the weight k in LLR.

Fig. 17. Relationship between app caching and interaction alert by varying
the coefficient µ.

illustrate the impact. Fig. 16 shows that along with the increase
of k, the number of cached app decreases. This is because
the condition of page unloading becomes stricter. More pages
are locked in SL1. On the other hand, the interaction alerts
decreased. Based on the evaluation, we find that both of these
two metrics perform well when k = 3.

3) Coefficient µ Impact: The coefficient µ is used to
control the ratio between SL1 and SL2. Both app caching
capability and interaction alerts are collected. Fig. 17 shows
the results by varying µ from 0 to 1. The app caching capa-
bility is increased and the interaction alerts are increased with
the increases of µ. This is because with the increases of µ,
more data will be placed at SL2 based on (1). In this case,
data from SL2 may not be able to preload to the SL1 dur-
ing app launching. Then, the possibility of interaction alert
will increase. To balance the tradeoff, µ is set to 0.8 in the
experiments of this article.

VII. RELATED WORK

Even though there are many valuable efforts on memory
management optimization [24], [25], memory swapping is still
promising as memory is scarce in mobile devices. There are

several recent works on swapping. Zhong et al. [26] built
the SP with nonvolatile memory (NVM), to improve the
performance of smartphones. Kim and Bahn [27] analyzed
the I/O characteristics of swapping operation in smartphones
and presented a new architecture that adopts NVM at the
swap layer. In their work, new generation storage mediums are
deployed as SP to improve efficiency. However, Flash, includ-
ing eMMC and UFS, is still the commonly deployed storage
medium in mobile devices. the assumption of close-to-memory
I/O throughput and low latency is not always available in a
real-world environment.

A memory compression-based swap is an alternative
approach since the speed of page (de)compression is much
faster than I/O. Take Android as an example, memory com-
pression techniques are deployed and enabled in the system.
It allows “swap to ZRAM (Compcache)” [22], which com-
presses pages and stores them in a dedicated RAM disk
to save memory space. Several compressed swap schemes
for server systems have also been proposed to meet the
memory demand of highly consolidated SPs or memory-
intensive workloads [28]. Kim et al. [29] further proposed a
compressed swap scheme for mobile devices, named ezswap.
It accommodates not only anonymous pages but also clean
file-backed pages. The design of SL1 of SEAL is inspired by
the memory compression technique. However, the effective-
ness of compression-based-swap is limited since compressed
pages still occupy memory.

Different from the expensive and scarce memory resource,
storage resource is abundant. With the growing capacity and
wear-leveling strategies, the wear-out risk of Flash becomes
controllable. Existing works, such as [30] have discussed
how to optimize lifetime when enabling swap mechanism.
Several works target secondary storage-based swap so that
Flash resource can be fully used. MARS [3] is designed to
speed up app launching through flash-aware swapping. It iso-
lates GC from page swapping for compatibility and employs
several flash-aware techniques to speed up app launching.
SmartSwap [4] presented a predictive process-level swap
mechanism. In the design, victim processes are swapped to
Flash ahead-of-time, which significantly improves efficiency.
FlashVM [31] focuses on changes to the virtual memory
system to make effective use of available fast storage devices
for swapping.

To take advantage of both memory compression and
secondary storage-based swap, several works utilized com-
pressed cache between main memory and secondary storage.
ZSWAP [23] improves the drawback of ZRAM, which can-
not evict compressed pages to the SP in secondary storage.
In the design of ZSWAP, pages are moved to the compressed
cache first. After that, it evicts some of the cached pages to
the secondary storage and then receives newly incoming pages.
Han et al. [32] proposed a hybrid swap scheme that stores fre-
quently accessed data in the in-memory compressed swap area
and sends infrequently accessed data to the swap space in the
secondary storage. This scheme improved the hit ratio of the
compressed swap by accommodating only the pages with low
compression ratios and access frequencies in the compressed
swap.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

LI et al.: SEAL: USER EXPERIENCE-AWARE TWO-LEVEL SWAP FOR MOBILE DEVICES 4113

VIII. CONCLUSION

This article proposes a user experience-aware two-level
swapping, which maximizes the benefits of app caching capa-
bility and minimizes the impact on user experience when
enabling swapping. It is the first work that focuses on address-
ing the swap induced user experience degradation. Both
launch time and execution time user experience are effec-
tively optimized. Three novel schemes, LLR, HPL, and AGS
are proposed. Experiments on real devices show that app
caching capability is improved by 2.43× on average when
enabling SEAL. Meanwhile, the interaction alerts reduced by
76% compared with the state-of-the-art technique.

REFERENCES

[1] K. Zhong et al., “Energy-efficient in-memory paging for smartphones,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 35, no. 10,
pp. 1577–1590, Oct. 2016.

[2] J. Lee, S. Park, M. Ryu, and S. Kang, “Performance evaluation of the
SSD-based swap system for big data processing,” in Proc. IEEE 13th
Int. Conf. Trust Security Privacy Comput. Commun., 2014, pp. 673–680.

[3] W. Guo, K. Chen, H. Feng, Y. Wu, R. Zhang, and W. Zheng,
“mars: Mobile application relaunching speed-up through flash-aware
page swapping,” IEEE Trans. Comput., vol. 65, no. 3, pp. 916–928,
Mar. 2016.

[4] X. Zhu, D. Liu, K. Zhong, J. Ren, and T. Li, “SmartSwap: High-
performance and user experience friendly swapping in mobile systems,”
in Proc. 54th ACM/EDAC/IEEE Design Autom. Conf. (DAC), 2017,
pp. 1–6.

[5] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “ProfileDroid: Multi-
layer profiling of Android applications,” in Proc. MobiCom, Aug. 2012,
pp. 137–148.

[6] T. Masashi and U. Takeshi, “Smartphone user interface,” Fujitsu Sci.
Tech. J., vol. 49, pp. 227–230, Mar. 2013.

[7] Android Developers. Analyzing UI Performance With Systrace.
Accessed: 2020. [Online]. Available: https://android.magicer.xyz/tools/
debugging/systrace.html

[8] D. E. Porter, T. Zhang, A. Zuck, and D. Tsafrir, “Apps can quickly
destroy your mobile’s flash: Why they don’t, and how to keep it that
way,” in Proc. MobiSys, 2019, pp. 207–221.

[9] M. Ju, H. Kim, M. Kang, and S. Kim, “Efficient memory reclaiming
for mitigating sluggish response in mobile devices,” in Proc. IEEE 5th
Int. Conf. Consum. Electron. Berlin (ICCE-Berlin), 2015, pp. 232–236.

[10] J. Suse, “Linux block IO—Present and future,” in Proc. Ottawa Linux
Symp., Jan. 2004, pp. 51–61.

[11] Mark Raymond. (2019). Mobile App Usage Report. [Online]. Available:
https://www.goodfirms.co
/resources/app-download-usage-statistics-to-know

[12] Android Developers. (2020). Systrace. [Online]. Available:
https://developer.android.com/topic/perfor
mance/tracing

[13] S. Jeong, K. Lee, S. Lee, S. Son, and Y. Won, “I/O stack optimization
for smartphones,” in Proc. USENIX Annu. Techn. Conf. (ATC), 2013,
pp. 309–320.

[14] C. Ji, L. P. Chang, C. Wu, L. Shi, and C. J. Xue, “An I/O schedul-
ing strategy for embedded flash storage devices with mapping cache,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 4,
pp. 756–769, Apr. 2018.

[15] Y. Liang et al., “Read-ahead efficiency on mobile devices: Observation,
characterization, and optimization,” IEEE Trans. Comput., early access,
Apr. 2, 2020, doi: 10.1109/TC.2020.2984755.

[16] C. Wu et al., “Maximizing I/O throughput and minimizing performance
variation via reinforcement learning based I/O merging for SSDs,” IEEE
Trans. Comput., vol. 69, no. 1, pp. 72–86, Jan. 2020.

[17] R. Prodduturi and D. B. Phatak, “Effective handling of low memory
scenarios in android using logs,” M.S thesis, Dept. Comput. Sci. Eng.,
Indian Inst. Technol., New Delhi, India, 2013.

[18] J. Kook, S. Hong, W. Lee, E. Jae, and J. Kim, “Optimization of out of
memory killer for embedded Linux environments,” in Proc. ACM Symp.
Appl. Comput., 2011, pp. 633–634.

[19] Engineers. (2020). Hikey970 Platform. [Online]. Available: https://
www.96boards.org/product/hikey970/

[20] Engineers. (2019). Android Debug Bridge (ADB) Tool. [Online].
Available: https://androidmtk.com/download-minimal-adb-and-fastboot-
tool

[21] Android Developers. Android Monkey. Accessed: 2020. [Online].
Available: https://developer.android.com/studio/test/monkey

[22] N. Gupta. ZRAM Project. Linux Foundation, San Francisco, CA,
USA. Accessed: 2020. [Online]. Available: https://www.kernel.org/doc/
Documentation/blockdev/zram.txt

[23] S.Jennings. Zswap Project. Linux Foundation, San Francisco, CA,
USA. [Online]. Available: https://www.kernel.org/doc/Documentation/vm
/zswap.txt

[24] L. Liu, Y. Li, C. Ding, H. Yang, and C. Wu, “Rethinking memory man-
agement in modern operating system: Horizontal, vertical or random?”
IEEE Trans. Comput., vol. 65, no. 6, pp. 1921–1935, Jun. 2016.

[25] L. Liu, S. Yang, L. Peng, and X. Li, “Hierarchical hybrid memory man-
agement in os for tiered memory systems,” IEEE Trans. Parallel Distrib.
Syst., vol. 30, no. 10, pp. 2223–2236, Oct. 2019.

[26] K. Zhong et al., “Building high-performance smartphones via non-
volatile memory: The swap approach,” in Proc. Int. Conf. Embedded
Softw. (EMSOFT), 2014, pp. 1–10.

[27] J. Kim and H. Bahn, “Analysis of smartphone I/O characteristics—
Toward efficient swap in a smartphone,” IEEE Access, vol. 7,
pp. 129930–129941, 2019.

[28] L. Yang, H. Lekatsas, and R. P. Dick, “High-performance operating
system controlled memory compression,” in Proc. 43rd ACM/IEEE
Design Autom. Conf., 2006, pp. 701–704.

[29] J. Kim, C. Kim, and E. Seo, “ezswap: Enhanced compressed swap
scheme for mobile devices,” IEEE Access, vol. 7, pp. 139678–139691,
2019.

[30] T. Song, G. Lee, and Y. Kim, “Enhanced flash swap: Using NAND
flash as a swap device with lifetime control,” in Proc. IEEE Int. Conf.
Consum. Electron. (ICCE), 2019, pp. 1–5.

[31] S. Mohit and S. M. Michael, “FlashVM: Virtual memory management
on flash,” in Proc. USENIX Annu. Tech. Conf., 2010, p. 14.

[32] J. Han, S. Kim, S. Lee, J. Lee, and S. J. Kim, “A hybrid swap-
ping scheme based on per-process reclaim for performance improve-
ment of android smartphones (August 2018),” IEEE Access, vol. 6,
pp. 56099–56108, 2018.

Changlong Li (Member, IEEE) received the B.S.
and Ph.D. degrees in computer science from the
University of Science and Technology of China,
Hefei, China, in 2012 and 2018, respectively.

He was a Visiting Scholar with the University of
California at Los Angeles, Los Angeles, CA, USA,
from 2015 to 2016. He is currently an Postdoctoral
Researcher with the Department of Computer
Science, City University of Hong Kong, Hong Kong.
His research interests include memory management,
storage, mobile devices, and distributed systems.

Liang Shi received the B.S. degree in computer
science from the Xi’an University of Post and
Telecommunication, Xi’an, China, in 2008, and the
Ph.D. degree from the University of Science and
Technology of China, Hefei, China, in 2013.

He is currently an Professor with the Department
of Computer Science and Technology, East China
Normal University, Shanghai, China. His current
research interests include flash memory, embed-
ded systems, and emerging nonvolatile memory
technology.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/TC.2020.2984755

4114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

Yu Liang received the B.E. and M.E. degrees
from the Department of Computer Science and
Technology, Shandong University, Jinan, China, in
2010 and 2013, respectively. She is currently pur-
suing the Ph.D. degree with the Department of
Computer Science, City University of Hong Kong,
Hong Kong.

Her research interests include file systems and
memory management.

Chun Jason Xue received the B.S. degree in com-
puter science and engineering from the University
of Texas at Arlington, Arlington, TX, USA, in May
1997, and the M.S. and Ph.D. degrees in com-
puter science from the University of Texas at Dallas,
Richardson, TX, USA, in December 2002 and May
2007, respectively.

He is currently an Associate Professor with the
Department of Computer Science, City University
of Hong Kong, Hong Kong. His research interests
include memory and parallelism optimization for

embedded systems, software/hardware co-design, real-time systems, and
computer security.

Authorized licensed use limited to: Carleton University. Downloaded on November 02,2020 at 17:15:57 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

