VICTORLAMP

XIRGESIA R
Z0: BiEFFEOESZERE

efk, BIRIEHIBAAIE: exiu@victorlamp.com

MR AT http://www.victorlamp.com
WA, N AZEIA, MTATEWEB, ST LEEEvictorlampZMIHEZEEEB/XD K,

ZHEMIRTE | (RN R XRGER AR)

https://study.163.com/course/introduction/1211245803.htm
http://www.victorlamp.com/

RIEER
(XRpER AR R —: BIEIESTRINRE)
(KRE AR R . BERFEEX)
(XA R i< = BiaP2PM%3)
(KR ARMRZIU: BiEEAEEE)
(KRR A O R —: HSH X RS TR R RIE)
(KRR Z DR = s XERGEETE S
(KRR AR OB = HHSHXRGERZ ZHIR)
(KRPERAZ ORI o X Rz O 54T)

HImT g
WMZ: —K

2015 £, MEBEXREEIARITA, STEMINAAAL: XEIREEARPNEFIRINEE (DRM) R,
HF X% PFSBOCDNF R A

EZTMX IR EFAEA,

S FEASHXEeE, IPFSIERIBIEEAE,

RANGENEFXHEIOFTTIALZE, KETHFENRNAFETARAREBE,

ANRIE T U E XRGE AR Z 2 O—F A RER R)R

HIRIXERGER, ERATFEARESELUR, FEOESEIREREMARRE?

O R RRUE P 2P W BT AR aaik B R AY AR B [a)RR,

ERARIR AR IAR, BR LA — IR TR ERBR FARESENR,

T A2 TLiRHE

PMB TORNE)", BEIEAT RINRE, ERERINTEARTAIIRZZHVIEFIIA, W—==E
25, WRNmAETFHE T T TREEBAMIDR, FIBILUANZ MR EEIEIAR IR,
BEA—RF, WRPE—2ZMEAV. EE—REMUDITR. —Z2IEMBFEFN—ZRM
IRITEEAEIR, BEIE—E30ANTRRITFA, BAER LI LITERX AEARIA,

XiRGEA+ AFBEILIRNE (FiE)

SRENXENE T RES—(pEENENE, ERRLEETS5Z2RFE, B2MARRE
S5ZWREER AN, EHERNXBEERIIORTE, WSMENT REHE RS —HY
TXAE. MXASE (FREZX) BEXEINEMNIZER, XEMNAT LI A KRG T
{ESULRR S A HEN L,

FRENN (FHR) AISRZIIEEIFHIIRKE. HREZNBISMEFRIEISHAMF TR
RpEsR Dase, MMRIER MRS —EUEM eI &1,

Leslie Lamport
Distinguished Scientist

Microsoft Research Lab — Redmond
Microsoft Building 99,

14820 NE 36th Street,

Redmond, Washington, 98052

USA

About
Leslie B. Lamport is an American computer scientist. Lamport is best known for his seminal work

in distributed systems and as the initial developer of the document preparation system LaTeX.
Leslie Lamport was the winner of the 2013 Turing Award (E|:R3Z) for imposing clear, well-
defined coherence on the seemingly chaotic behavior of distributed computing systemes, in
which several autonomous computers communicate with each other by passing messages. He
devised important algorithms and developed formal modeling and verification protocols that
improve the quality of real distributed systems. These contributions have resulted in improved
correctness, performance, and reliability of computer systems.

https://www.microsoft.com/en-us/research/lab/microsoft-research-redmond/

T ARE L ESZEEE?

The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal ls. With ble written the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Categones and Subject Descriptors: C.2.4. [Computer-Communication Networks] Distributed
k operalmg D.4.4 [Operating Sy]: C ions M t
network D.4.5 [Op i yst]: Reliability—fault tolerance

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Interactive consistency

’

1. INTRODUCTION

A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is
often overlooked—namely, sending conflicting information to different parts of
the system. The problem of coping with this type of failure is expressed abstractly
as the Byzantine Generals Problem. We devote the major part of the paper to a
discussion of this abstract problem and conclude by indicating how our solutions
can be used in implementing a reliable computer system.

We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals can
communicate with one another only by messenger. After observing the enemy,
they must decide upon a common plan of action. However, some of the generals

This research was supported in part by the National Aer: ics and Space Admini ion under
contract NAS1-15428 Mod. 3, the Ballistic Missile Defense Systems Command under contract
DASG60-78-C-0046, and the Army Research Office under contract DAAG29-79-C-0102.

Authors’ address: Comp Science Lab. 'y, SRI International, 333 F d Avenue, Menlo
Park, CA 94025.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1982 ACM 0164-0925/82,/0700-0382 $00.75

ACM Transactions on Programming Languages and Systems, Vol. 4, No. 3, July 1982, Pages 382-401.

19824, Leslie Lamports ﬂ“'”‘#ﬁ.‘jj?%%ﬂ’jﬁﬁ}‘“ﬁﬁhh (Byzantine
failures) , EOTIERIZR AT FELDH TS 1K BR)RR,

(= ﬁﬁﬁf B ER LS EAMERARBIEINLE, S ENrmTECRIRE, X
SELZEIREEBLEEREES. ENHEHTMERE, BEIMRHELT—Ht
0 shitdl. (B2, BESEARERERKE XLRIERESABLE IRV ZEIApE
1

° SIS BTG, BRI TMEARIER, H4T

/L,\

XNl &) S

HEAO R, %HQT%E%%E@H%UO

A8

VICTORLAMP

HOESERRMER

[ERERYE S
XN iR RIRZE, BRIESHXRENHI., BEIERRYEEE !
1 XERERGRE, FEEER—NTE, MRE—EFZEENTR
2. XEREFARBELERE, RIERELARR
3. EEEEEEEHIREREERE
4. [EERIBEREERGR
5. XN BERAERIREREMSE
6. BE(JERETETHRERREREZAIE, IR

HOERBEEAPHAEZEBERRATWER T EEAEEFTR, RIBRESEAIEERLD,
LamportE4&8IEI T BB Al e =R A Al 58 Dl BB B EEEN AR — S 2~ AT 8elY. P
LI, ERFEAREREIENNR, ELRE FEEREREITH.

HOERERREFIRAFEEIAREEARENX

T FHEAEERG, RINTRESEAIN, RERBELAF, NSAN23F+1ET, BT EE, B
HES TR IABFTIHITRIE,

BRI — MEIERE RXTRSEAN, (FEDREENF, BRERT R0, Tl
(REMIS) NERTRIAL; BARKRBRLZENNAA SR HELR: BRNERTR
BEFETR, BERNBOIETHEIER T <.

AN ENTN: L1>F+1, L1>L2+1 (L2=F) , XL1=N-L2-F, BPN-F-F>F+1, 18HN>3F+1
; R EHIRTEANET/EE, FEBMNESESESR L, BRFT—EFEENEISAYORE,
S EEIEE MRS iRg=h,

FHAOESECR EEE BEEAWNEEPR, ENEREA: AERNASR N, SFESIHRE
RIS S TIMESRESIRT, AT BER LA AR E PR SRIAZ YR, XA MIELEIR
HYRR, H—PR FOEREOR EEEARIuZ TR, ENEAEEN EROAEERIFR
TARMEMSENBERER T, DMEMNSPRITZ T RAAMEAMIR .

—H AR EEH

Paxos

19905, Paxos&EiLELeslie Lamportig I —fETFEEE RN —HIEE L, BTEIELIER, Y
FHixE5 EAKAVEW,

19984, LamportiZIe N EH AFRZITOCS E, BEMEINLPaxos&FA R IR EERIEMN,

20015, LamportArE R EIIRIA EIE S 28 HE AfmA.

065 Googlexn ¥ =mie3, HEPEChubbyiiifRSS{ERPaxostFAChubby CellFR9—EEE X, Paxos
A9 NS ML —EEIERN.

] i — AR
T —EL

] s — kR :

|

~ Multi-Raft EZOV)

Raft&ix

In Search of an Understandable Consensus Algorithm
(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

1 Introduction

Consensus algorithms allow a collection of machines
to work as a coherent group that can survive the fail-
ures of some of its members. Because of this, they play a
key role in building reliable large-scale software systems.
Paxos [15, 16] has dominated the discussion of consen-
sus algorithms over the last decade: most implementations
of consensus are based on Paxos or influenced by it, and
Paxos has become the primary vehicle used to teach stu-
dents about consensus.

Unfortunately, Paxos is quite difficult to understand, in
spite of numerous attempts to make it more approachable.
Furthermore, its architecture requires complex changes
to support practical systems. As a result, both system
builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to
find a new consensus algorithm that could provide a bet-
ter foundation for system building and education. Our ap-
proach was unusual in that our primary goal was under-
standability: could we define a consensus algorithm for
practical systems and describe it in a way that is signifi-
cantly easier to learn than Paxos? Furthermore, we wanted
the algorithm to facilitate the development of intuitions
that are essential for system builders. It was important not
just for the algorithm to work, but for it to be obvious why
it works.

The result of this work is a consensus algorithm called
Raft. In designing Raft we applied specific techniques to

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

o Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

Leader election: Raft uses randomized timers to
elect leaders. This adds only a small amount of
mechanism to the heartbeats already required for any
consensus algorithm, while resolving conflicts sim-
ply and rapidly.

Membership changes: Raft’s mechanism for
changing the set of servers in the cluster uses a new
Jjoint consensus approach where the majorities of
two different configurations overlap during transi-
tions. This allows the cluster to continue operating
normally during configuration changes.

‘We believe that Raft is superior to Paxos and other con-
sensus algorithms, both for educational purposes and as a
foundation for implementation. It is simpler and more un-
derstandable than other algorithms; it is described com-
pletely enough to meet the needs of a practical system;
it has several open-source implementations and is used
by several companies; its safety properties have been for-
mally specified and proven; and its efficiency is compara-
ble to other algorithms.

The remainder of the paper introduces the replicated
state machine problem (Section 2), discusses the strengths
and weaknesses of Paxos (Section 3), describes our gen-
eral approach to understandability (Section 4), presents
the Raft consensus algorithm (Sections 5-8), evaluates
Raft (Section 9), and discusses related work (Section 10).

2 Replicated state hi
Consensus algorithms typically arise in the context of

improve understandability, including d ition (Raft

separates leader election, log replication, and safety) and

This tech report is an extended version of [32]; additional material is
noted with a gray bar in the margin. Published May 20, 2014.

repli d state hines [37]. In this approach, state ma-
chines on a collection of servers compute identical copies
of the same state and can continue operating even if some
of the servers are down. Replicated state machines are

RaftEZMNEEB IR 212/ (UnderStandable)
XMIE R LB SR, 78, RaftiSsg 7ol IR,

ElE6E. HISEME. Rl ARIELEE R ETPaxosHy,

Raft&iZEs B

http://thesecretlivesof
data.com/raft/

VICTORLAMP

http://thesecretlivesofdata.com/raft/

XiRGERRYILIRHE

(OIS REERR, ERo— MU

1.
2.
3.

PR EEHIUIHEE R LU AR EE B AR
BEREFERE, MRIABOABEHK, 6 AFEZASRE, HEEEW
BRTHEPEFERE, BREEIETEO K ESHIATE

XERGERIAE RIS 22

1.
2.

EENEEITEN TR, EEEREATEVENNEET, WEHERRBEA— T ARLNNXRICE,
XRGERARERIXERTIONT A, R TEREEINESR, FRA T TEEIE (PoW) , BI—P T REREZTAE=R
IHWETEAREE—MER, MEETRRAFTRONNEREEIEREEN, XERER/IIIRNER. BB RaEER
N5t

20 TRIE—RINENIRSEEHEA—TXR, ELNER, S TKREERE—R, SIXKREEE 7 L— XK
S| (I7%1E) , AEBEAFRIEE, NMIEAGFHIXIR, BREEE, REM 7 XIRHE,

ATIESIE. RIPIIESR, FEHASHNEN— P EFOHURIARENEZ AR EME, EE253 0 LIERESEE
EIXp—EL, (EMEIEERY T A,

XIRHERRIFERHH
FHRHBURER T KIRGEEIES VAR MAR—EIEMID, BEERSTEE, NRARL L5
EREGREMERRGPHIEEMA, NEXHZONMMEER, AE— T EROEY, XEEHERE—

IR, PRLALRARBHENE, EBNMEXNNEEHEERENT=,

AR A DR GEZ AN AR RIX)RR 7
1 BcXE EEERME—RY, FELROY THLEZT, BESZICKIEERE—10 L, f=F
Z 0 TEFICKRER (R FEZ TR ERIREHIENEN) .

2. FORWIE, BURHRERENE DT 18, Xz XRNESEEAR—. FEEXENERIFERRE
TRELIRE, TREERRIKAYER THEEA,
: PRAEES1%IE, &N

XHRGER TINEROR, MEEHTINEFE, FEBTXKREFEXRES

TRRE L

PoW (Proof Of Work) : T{F=iERBHNFl

HAERAIX B LEIESITRY, £ XIPBFTHEIRIFEZ ME TN At WITY BITCON vamas
I NSE— AN DSUET 7 OEMRoE, 1BHHR
FATPOWE %, PoWRRAMIEIESE FAHR, {RESH
WARIRE N, BRWIEE, EIR A4 T — Block. e
/l\éj\ﬁftal‘jﬁj%qjo Nonce = 14202

w”m”'l s | S ;u:?:::,.,] 32939236784956730563263430544930 |
BB A= RTE — EESARIHashERIRS1C MK Trans #2 1ok (SHA-256)

Trans #3 info
N (KERE) , E7MTaiEHERENHashBEZ fF,
20 FWE T IEIT KR, MERITHakEIKEE, . :

ncremen No es

SN ELRR(TIAIE, WNRIEEIDT, NEERELET A Non;;:in:.,y | X
Ik, B AB2RIaiXER, meakEEsiX X
th, ICRIECHKAS, AEHITF— P RRIEFECK, Nonce = 14202 3293923675495673056326 430544934
_ . I'I"H' AEe . 4o . 9""'5“ — Nonce = 14203 *- 08a3764628ab577e42990(e452323a72
FENCK P REFEINHRE, HMKksIEETRET5RF. Nonce = 14204 » 91098379236785768899e/56 72206542] !
TS S AT, BEASHRITTEY, FEkk Nonce = 14205 | 0000000002456 TBRseseScati5 666917 _| ysolutin
EFEFTOMNXIR, EMINTD MBS, BIRET

EXIZH PR, XFENT RINZEFERERAATEERN
HE, MM RIER KRR —HUE,

FIGURE 4: PROOF-OF-WORK ILLUSTRATED

PoW (Proof Of Work) : T{ESiERBHN$IER S

=

OFEEFILMN, TREBRL, 8% 7 EX AR OMERTIPRIRAS,
REREFEAENENNBIEMSREIRIS0%, MEHRZINEMEERL—E, FAm]

SEXHHICE,

ORANBZET], SRIGICIIUREEA, BE R e AR,

TR
O BRIt HIz & ASNE SRR,
QIZH BN EHEISAIZH ENNEEET

OHRMERET, SEEBK, SVRSEEaTERS.

PoS (Proof of Staked) : BESIERBINE

Wb, 23X TIESIERTIGEIEFE A MKt SRR —MenH B RN E, HeX 2 HRProof of
Stake, EFRPOS, S5ITIFSUERBHIHIESKT S AMNAITIE AR IT BRI Z B UERIWIHIAE, N axiEREAL®
HRIER . EXHEPIEE CBE —EHENHFLEMAPTEN, BN,

POSTEMRARAUERBALE], EGREERIYIRE N T FRPOWTSSRAVREREIRR, XAMRT, MFA MBS ENZ. TE
IS, ICIKRIIERMRS (FEHE, REH=Z) , JUTHEHEE, 26%E, PoSEEHE—1ZiEIm
e, BITMERTEIMR, MRFFEI000Mm, BHEFE 730K, BRALERAIMESRI/93000, X EIfEal
RIRAI T —1PoSXIR, (REIDEEHMARBEL N0, REHIERE305MES, MM XERFIRIS0.051MAYER
FhESTERIZR%), EXPEAF, &F = 3000 * 5% / 365 = 04117, BIEHEFIER.

POSTEAPOWRI—FTHR LIRS, RIEE T T RIS MINEENNE, SRR EZYT E, £
EE LS r INRARRIETE, (EREENEABFTE T ASRIRAITIZY , BEIELICE, MPoWt]
HZEPoSHLH,

PoS (Proof of Staked) : ESiFEBHHI(EER S

BidiFaToken (Th) BIMEFATIKRERIRBICKIWER, SUTFRENSAHE, 568
NG ZRI AL BEIEAISEZHINZL, TokentBE FXABPREZINTG., BRIBRESHMFE~H
POW A THFT T,

L=
OB 1 POWHHIHRIRIRZE,
QMR TIZERE, BaILAE A TIFSUEBREIFHRMR

TR
OB MR RRBEICEIN L=, S2SHEANN, BEUE, NasskmeE
b, MR E IR,

DPoS (Delegated Proof of Stake) : ZIBINaRiEIBHNE]

DPOSENaIERRH—Meitidthin s, ThRIIEABREMES ST /RTIRIE, MEEEEnERKHT, RAE
J_X‘_J:}EIE z \-L/ \ij’—?—\o

BitSharestt X B 6@ 7 DPOSHLE, FSIN T WIEARIEE, WIEARLAERXER (IEMKFRERM) , 88—
FFALERAIA SRR LUSSRIRZE WIEA,, SREEI00Z2ANRIEE R LASIRATMEA, DIE AR RIZE S5 4
EEREEFT—IR, DMEABIBENARE, #fOXEREMKER (REJ2SHEIR) , BWIEAE2SRREELHR, NIE
sHBEEI N —1I0EA, BT RRARUBEITEIIREE#IGEA, RUEIEAS TIRERIF B RIRARILE,
B IS E S HI L IRAE

LI, DPOSEEfR ERXMILORHIT Y o4k, STBIREBERSFIAMNIMEAINE (GERDHEHERIWIEAN) | A&
EINMEAZBIBIARRZIIERIR, XFEAKIES S BT ARFGRITIRNER, NEMBERE, DPoSSUEHIEDL
AERREAZHEBRUZL, MRAFAREEITMIERESE, PIAIPREEHZITEHR, MWL WIET
FBTHRAT,

DPoSEIEMIEREFIREENIBE R T 2R LARER R, (BEArE R R I TR EE, FLalIER X
HIEOSIBN T mzeisii3emy, RE RIS, EEREEEEIXIRIEINE,

DPoS (Delegated Proof of Stake) : ZHIEHESIERBH SRS

EETPOSHTELNEGWRIBAL R, RMITEESKE, 5B ockenW AKRELEEBEENT =,
EEETEA, ABEARIRIIENCK, F~RETFPOWFIPOSAIEZMERRT LIS 51EK=E S,
DPOSHUIC T mE— BT EIER AN EHEN,. AT HMEZAS5S5EE, EaaEr/sChmiEA
e

=¥
HIRPOW, DPoSKIgiR=XRpEMEHIERIRE D, EE0JLISCHIFEINK, FIATH KIERRAERX
%N E L 2RIZRH,

R :
EFIEEERSS, TRAERANIELERY, RFIEHEICPOSEIE, T UMANE AR IED
RHRRTEE,

SR109%ES, SMER—MRER, IAREIEE, MAZSXMERER, KELER, KREEMEHE—NEBERIRAY K",

Proof of Work

i I;m;:c;u;l;v ei :ﬁ:;ﬁ mus:be Vb’e!;m ;—
Block: D0000G001000000000000000000I0000
[Block Biock
—;Emmm 1§ Nonce | |—to{ Prov Hasn | [Nonce : 2 il
Keep inserting Nonce = 14202
T LEf CaGadCcd . - -
Challenge / Random bits Trans #1 info Hash ‘
——= Function [—] 32939236784956730563263430544934 |
i i Trans #2 info (SHA-256)
Proof of Wor .
Trans #3 info
— Prev BC Hash
Increment No Yes
Nonce and try
again
When 1 zero added,
work will be doubled \\ ~ Nonce 1’202__—*! 32939236764956730563263430544934
0000000...0XXXXXXXXX...X Nonce = 14203 s (8337688283b577642990(e452323472
T Nonce = 14204 e+ 91098379236785768899el5672306542]
A = 2A4 *
Because 275 = 274 * 2 Threshold zeros Nonce = 14205 —————————= (0000000024567868%ee3ca465666917 olution
found

FIGURE 4: PROOF-OF-WORK ILLUSTRATED

New biock

@ |] <« 1B1IPoWiARKIEIR

Starting block

Time B

VICTORLAMP

57 159!

VICTORLAMP

Shenzhen VictorLamp Technologies CO. Ltd.
http://www.victorlamp.com

ZHEMIRTE | (RN R XRGER AR)

et L5
[
RNZHBOREERAR

https://study.163.com/course/introduction/1211245803.htm

