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The Byzantine Generals Problem

LESLIE LAMPORT, ROBERT SHOSTAK, and MARSHALL PEASE
SRI International

Reliable computer systems must handle malfunctioning components that give conflicting information
to different parts of the system. This situation can be expressed abstractly in terms of a group of
generals of the Byzantine army camped with their troops around an enemy city. Communicating only
by messenger, the generals must agree upon a common battle plan. However, one or more of them
may be traitors who will try to confuse the others. The problem is to find an algorithm to ensure that
the loyal generals will reach agreement. It is shown that, using only oral messages, this problem is
solvable if and only if more than two-thirds of the generals are loyal; so a single traitor can confound
two loyal ls. With ble written the problem is solvable for any number of
generals and possible traitors. Applications of the solutions to reliable computer systems are then
discussed.

Categones and Subject Descriptors: C.2.4. [Computer-Communication Networks] Distributed
k operalmg D.4.4 [Operating Sy ]: C ions M t
network D.4.5 [Op i yst ]: Reliability—fault tolerance

General Terms: Algorithms, Reliability
Additional Key Words and Phrases: Interactive consistency

’

1. INTRODUCTION

A reliable computer system must be able to cope with the failure of one or more
of its components. A failed component may exhibit a type of behavior that is
often overlooked—namely, sending conflicting information to different parts of
the system. The problem of coping with this type of failure is expressed abstractly
as the Byzantine Generals Problem. We devote the major part of the paper to a
discussion of this abstract problem and conclude by indicating how our solutions
can be used in implementing a reliable computer system.

We imagine that several divisions of the Byzantine army are camped outside
an enemy city, each division commanded by its own general. The generals can
communicate with one another only by messenger. After observing the enemy,
they must decide upon a common plan of action. However, some of the generals

This research was supported in part by the National Aer: ics and Space Admini ion under
contract NAS1-15428 Mod. 3, the Ballistic Missile Defense Systems Command under contract
DASG60-78-C-0046, and the Army Research Office under contract DAAG29-79-C-0102.
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In Search of an Understandable Consensus Algorithm
(Extended Version)

Diego Ongaro and John Ousterhout
Stanford University

Abstract

Raft is a consensus algorithm for managing a replicated
log. It produces a result equivalent to (multi-)Paxos, and
it is as efficient as Paxos, but its structure is different
from Paxos; this makes Raft more understandable than
Paxos and also provides a better foundation for build-
ing practical systems. In order to enhance understandabil-
ity, Raft separates the key elements of consensus, such as
leader election, log replication, and safety, and it enforces
a stronger degree of coherency to reduce the number of
states that must be considered. Results from a user study
demonstrate that Raft is easier for students to learn than
Paxos. Raft also includes a new mechanism for changing
the cluster membership, which uses overlapping majori-
ties to guarantee safety.

1 Introduction

Consensus algorithms allow a collection of machines
to work as a coherent group that can survive the fail-
ures of some of its members. Because of this, they play a
key role in building reliable large-scale software systems.
Paxos [15, 16] has dominated the discussion of consen-
sus algorithms over the last decade: most implementations
of consensus are based on Paxos or influenced by it, and
Paxos has become the primary vehicle used to teach stu-
dents about consensus.

Unfortunately, Paxos is quite difficult to understand, in
spite of numerous attempts to make it more approachable.
Furthermore, its architecture requires complex changes
to support practical systems. As a result, both system
builders and students struggle with Paxos.

After struggling with Paxos ourselves, we set out to
find a new consensus algorithm that could provide a bet-
ter foundation for system building and education. Our ap-
proach was unusual in that our primary goal was under-
standability: could we define a consensus algorithm for
practical systems and describe it in a way that is signifi-
cantly easier to learn than Paxos? Furthermore, we wanted
the algorithm to facilitate the development of intuitions
that are essential for system builders. It was important not
just for the algorithm to work, but for it to be obvious why
it works.

The result of this work is a consensus algorithm called
Raft. In designing Raft we applied specific techniques to

state space reduction (relative to Paxos, Raft reduces the
degree of nondeterminism and the ways servers can be in-
consistent with each other). A user study with 43 students
at two universities shows that Raft is significantly easier
to understand than Paxos: after learning both algorithms,
33 of these students were able to answer questions about
Raft better than questions about Paxos.

Raft is similar in many ways to existing consensus al-
gorithms (most notably, Oki and Liskov’s Viewstamped
Replication [29, 22]), but it has several novel features:

o Strong leader: Raft uses a stronger form of leader-
ship than other consensus algorithms. For example,
log entries only flow from the leader to other servers.
This simplifies the management of the replicated log
and makes Raft easier to understand.

Leader election: Raft uses randomized timers to
elect leaders. This adds only a small amount of
mechanism to the heartbeats already required for any
consensus algorithm, while resolving conflicts sim-
ply and rapidly.

Membership changes: Raft’s mechanism for
changing the set of servers in the cluster uses a new
Jjoint consensus approach where the majorities of
two different configurations overlap during transi-
tions. This allows the cluster to continue operating
normally during configuration changes.

‘We believe that Raft is superior to Paxos and other con-
sensus algorithms, both for educational purposes and as a
foundation for implementation. It is simpler and more un-
derstandable than other algorithms; it is described com-
pletely enough to meet the needs of a practical system;
it has several open-source implementations and is used
by several companies; its safety properties have been for-
mally specified and proven; and its efficiency is compara-
ble to other algorithms.

The remainder of the paper introduces the replicated
state machine problem (Section 2), discusses the strengths
and weaknesses of Paxos (Section 3), describes our gen-
eral approach to understandability (Section 4), presents
the Raft consensus algorithm (Sections 5-8), evaluates
Raft (Section 9), and discusses related work (Section 10).

2 Replicated state hi
Consensus algorithms typically arise in the context of

improve understandability, including d ition (Raft

separates leader election, log replication, and safety) and

This tech report is an extended version of [32]; additional material is
noted with a gray bar in the margin. Published May 20, 2014.

repli d state hines [37]. In this approach, state ma-
chines on a collection of servers compute identical copies
of the same state and can continue operating even if some
of the servers are down. Replicated state machines are
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