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Quantum decision making 
in automatic driving
Qingyuan Song1,3, Weiping Fu1,2*, Wen Wang1, Yuan Sun1, Denggui Wang1 & Jincao Zhou1

The behavior intention estimation and interaction between Autonomous Vehicles (AV) and human 
traffic participants are the key problems in Automatic Driving System (ADS). When the classical 
decision theory studies implicitly assume that the behavior of human traffic participants is completely 
rational. However, according to the booming quantum decision theory in recent years and actual 
traffic cases, traffic behaviors and other human behaviors are often irrational and violate the 
assumptions of classical cognitive and decision theory. This paper explores the decision-making 
problem in the two-car game scene based on quantum decision theory and compares it with the 
current mainstream method of studying irrational behavior-Cumulative Prospect Theory (CPT) model. 
The comparative analysis proved that the Quantum Game Theory (QGT) model can explain the 
separation effect which the classical probability model can’t reveal, and it has more advantages than 
CPT model in dealing with game scene decision-making. When two cars interact with each other, the 
QGT model can consider the interests of both sides from the perspective of the other car. Compared 
with the classical probability model and CPT model, the QGT is more realistic in the behavior decision-
making of ADS.

For a long time in the future, autonomous vehicles will inevitably share urban roads with human traffic 
participants1. In order to drive safely and efficiently in this complex traffic surrounding, autonomous driving 
vehicles need to correctly estimate the behavioral intention of human traffic participants and interact with human 
traffic participants naturally just like human driving vehicles2,3. The behavior of human traffic participants and 
their interactions are very random in the real world actually. Osamu proposed that such randomness is character-
ized by obvious uncertainty and irrationality4. The "long tail" problem of autonomous driving includes various 
fragmented scenarios, extreme situations and unpredictable human behavior. This is related to the unreasonable 
behavior intention and uncertainty5, which needs to be studied by correct and effective cognitive and decision 
theory.

The mainstream methods of behavior decision-making, the traditional machine learning methods based on 
classical probabilistic reasoning6,7 and the deep learning methods based on data drive are common. Traditional 
machine learning methods generally assume that the evolution process of traffic participants has the character-
istics of Markov Decision Processes (MDP), Hidden Markov Model (HMM), Dynamic Bayesian network (DBN) 
and other methods to infer intentions. And the most extensive Partially Observable Markov Decision Processes 
(POMDP) is used to obtain correct behavior decision. However, the existing results of human behavior decision-
making theory show that human behavior is incompatible with the complete rational hypothesis in classical 
decision-making theory8. And the cognitive and decision-making theory based on classical probability cannot 
accurately describe human behavior and its interaction9, which are the main bottlenecks restricting the safe and 
efficient driving of autonomous driving in actual urban traffic scenes10. Data-driven deep learning methods 
must rely on massive big data sample training (accumulated actual driving miles need to reach tens of billions 
of miles) to deal with the “long tail” problem that may cause driving accidents11,12 and the explosive progress of 
autonomous driving technology being hindered. Daily, low probability of occurrence or emergent, dangerous, 
and the edge (corner) scene of scarce samples are often related to irrational behavior and interaction13,14. And 
pure deep learning method based on data driven is difficult to effectively cope with the “long tail” problem15.

What is gratifying is that quantum theory originated in the field of microscopic physics has been extended 
in the past two decades and it made great progress in many non-physical and macro fields such as cognition, 
decision making, information, communication, computing, etc. It has not only formed an increasingly mature 
theoretical system, but also been increasingly widely applied16. In particular, the initial quantum inkling in 
the field of mobile robots, being most closely related to unmanned driving technology16, allows us to see the 
potential and possibility of applying quantum theory to solve the cognitive problems of autonomous driving. 
Quantum theory provides a new way to study the uncertain behavior (including irrational behavior) of human 
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traffic participants and their interaction. How to correctly understand the uncertain behavior and interaction 
of human traffic participants based on quantum theory, and how to make correct interactive behavior decisions 
based on this is the focus of this paper waiting to explore and solve.

At present, there is no relevant literature to explain autonomous driving with quantum cognition and decision 
theory. Based on the Quantum Game Theory (QGT) model, this paper analyzes the behavior decision-making 
problem of human traffic participants (two-car game case), and compares it with the current mainstream method 
of irrational behavior research-Cumulative Prospect Theory (CPT), verifying the accuracy of the two models 
with data set experiments.

Related work
Decision‑making of automatic driving behavior considering interaction.  The most widely used 
traditional machine learning is Partially Observable Markov decision processes (POMDP)17, including predic-
tion intention and behavior selection, which regards the intention of road users as a potential representation in 
decision-making state space. Mehta18 proposed a navigation method based on POMDP, the evaluation decision 
was made by a set of pre-designed forward simulation predictions of closed-loop behaviors, and the social inter-
action between autonomous vehicles and other participants was also considered. Hubmann19 proposed a unified 
decision-making planning framework of online POMDP for complex signalless intersections, which considered 
the uncertainty of traffic participants’ behavior intention, motion prediction and interaction with autonomous 
vehicles, but like most literatures, it still assumed that traffic participants’ behavior decisions were rational. There 
are also some behavioral decision-making frameworks based on game theory that consider interaction, but the 
behavioral intention cannot be considered, or the participants are assumed to be rational. Fabiani20 proposed 
a multi-vehicle distributed hybrid coordination decision-making framework, which formalized the problem of 
non-cooperative behavior coordination as a generalized mixed integer game model. Coskun21 combines game 
theory with MDP, and describes the decision-making process of interaction between autonomous vehicles and 
other vehicles with MDP game model. Isele22 formalizes the interactive decision-making process as a random 
game (extended MDP) model, and realizes interactive decision-making by designing effective search and rea-
soning strategies of intent game tree. Tian23 established an interactive decision-making framework based on 
K-level game theory, while Li24 proposed a game theory framework integrating cognitive hierarchy theory and 
Bayesian reasoning, which can better describe the bounded rational interaction of participants. In addition, 
there is a negotiation framework based on heuristic strategy, which is different from the game decision-making 
framework, and can deal with interactive behavior decision-making problems3, but does not consider the irra-
tional behavior of traffic participants.

In recent years, the method of deep learning motion planning based on data-driven has attracted more and 
more attention25. The two most representative paradigms of deep learning in motion planning are planning 
based on Deep Imitation Learning (DIL) and Deep Reinforcement Learning (DRL)26. DIL can be trained with 
data collected from the real world, but these data are scarce in corner cases, which makes the response of the 
trained network uncertain when encountering invisible data; DRL system can explore different driving situations 
in the simulated world, but when transplanted to the real world, these models often have biased behaviors12. 
In recent years, DRL and DIL have provided effective solutions to solve MDP problems in high-dimensional 
state space and decision space, and promoted the research on autonomous driving behavior decision-making to 
make important progress27. However, the established DRL/DIL model is difficult to verify and ensure safety in 
the actual complex environment. In the actual deployment of this model, there may be great challenges in terms 
of stability and robustness26, at present, it is basically in the stage of simulation research, and most of them are 
aimed at simple scenes12,27,28. Transferring the driving strategies learned from simulation to the real world is still 
an open research challenge29.

At present, people have made quite a lot of research achievements in the behavioral decision-making planning 
of autonomous driving and safe navigation, but most of the researches are based on rational behavior assump-
tions, especially the interaction between autonomous vehicles and traffic participants24,30, and their uncertain 
behavior decisions are mostly based on the classical probability decision-making theory and game theory, but the 
complete rationality assumed by the classical game theory cannot accurately describe human decision-making 
behavior31.

Quantum decision theory.  Quantum mechanics is the greatest discovery in the last century, which greatly 
promotes the development of modern science and technology and becomes the theoretical pillar of emerging 
science and technology. Scholars in the field of cognition have found that the interaction between interference 
and entanglement in quantum mechanics and human cognition has many similar characteristics, which urges 
us to construct a mathematical expression method of quantum mechanics, introduce quantum probability into 
the cognitive field, try to use the unique characteristics of quantum mechanics to build a cognitive model, and 
explain the problems in the field of human cognition that can not be explained by the cognitive decision theory 
based on classical probability,quantum cognitive decision theory based on quantum probability is gradually 
born32. Quantum logic was put forward by the famous mathematician Von Neumann, who defined the event 
as a subspace in Hilbert space32, so that quantum probability does not need to be constrained by many Boolean 
logic rules such as the rule of total probability. Therefore, quantum decision theory can allow those events that 
violate the law of total probability to exist. Busemeyer and Bruza pointed out that quantum logic is actually a 
kind of generalized Boolean logic, which does not have many constraints in Boolean logic, has greater flexibility 
and randomness, and is more conducive to explaining people’s judgments and decisions16.

In recent 10 years, quantum cognitive decision theory has made a series of breakthroughs in the field of 
human cognition, which has been recognized as a new way to explore human cognitive science33–36. The quantum 
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cognitive decision theory [such as Quantum Bayesian Theory (QBT)16, Quantum Game Theory(QGT)16, etc.] 
produced by combining quantum probability with classical machine learning theories (MDP, POMDP, DBN, 
HMM, etc.) provides a more advanced, effective and feasible theoretical tool for the cognitive decision research 
of autonomous driving system. Song and others for the first time quantum cognitive decision making theory is 
introduced into Autonomous driving field, aimed at the pedestrian crossing in Autonomous driving scene to 
build the kind of QLBN model, and compared with classical bayesian model made, in the case of the pedestrian 
crossing well explain the existence of irrational behavior, at the same time to build the kind of Quantum social 
force model and compared with the mainstream data-driven model, it also has a good advantage in pedestrian 
crossing trajectory prediction37, Catarina used QLBN to analyze "prisoner’s dilemma" cases and obtain predictive 
results for similar events. Comparing with reality, Catarina proved the predictability of the quantum probability 
method38.

To sum up, there is no systematic method for automatic driving decision-making considering irrational 
behaviors of human traffic participants and their interactions. Although quantum decision-making theory has 
made great progress in recent years, it provides a new method to study the automatic driving decision-making 
problem considering the interaction of human traffic participants’ behaviors (including irrational behaviors), 
but there are no research cases applied in the field of automatic driving at present. In this paper, the two-car 
game case is analyzed by QGT, which is the first attempt to apply quantum decision theory in the field of ADS.

Method
Classical probability and quantum probability.  Let’s assume that a system has attribute A, and its 
value can be up and down. In addition, the system also has attribute B, and its value can be left and right. The 
biggest difference between quantum probability and classical probability is that there are incompatible attrib-
ute pairs, that is, two attributes cannot be measured at the same time. Correspondingly, if two attributes can 
be measured at the same time, they constitute a compatible attribute pair. For the measurement of an attrib-
ute, quantum probability and classical probability will get exactly the same result. Furthermore, for compatible 
attribute pairs, there is still no difference between quantum probability and classical probability. In other words, 
the compatible attribute operation in quantum probability has been able to cover all the contents of classical 
probability theory. However, for incompatible attribute pairs, many classical probability algorithms are no longer 
valid. The properties of classical probability system can be found in the measurement of compatible attributes of 
quantum probability, but conversely, the incompatible attributes in quantum probability have special properties, 
so it can be said that quantum probability contains more probability operation systems than classical probability.

The advantages of quantum probability methods in decision-making will be demonstrated below by compar-
ing Bayesian Network (BN) and Quantum-like Bayesian Network (QLBN) .

Bayesian network (BN).  A Bayesian Network (BN) is a directed acyclic graph in which each node represents a 
random variable, and each edge represents a direct influence from the source node to the target node. The graph 
represents independence relationships between variables, and each node is associated with a conditional prob-
ability table that specifies a distribution over the values of a node given each possible joint assignment of values 
of its parents.

Bayesian networks can represent essentially any full joint probability distribution, which can be computed 
using the chain rule for Bayesian networks. Let G be a BN graph over the variables X1,X2, ...XN . We say that a 
probability distribution, Pr, over the same space factorises according to G, if Pr can be expressed as the product39.

In Eq. (1), PaXi , corresponds to the all the parent variables of Xi . The graph structure of the network, together 
with the associated factorisation of the joint distribution allows the probability distribution to be used effectively 
for inference (i.e. answering queries using the distribution as our model of the world). For some query Y and 
some observed variable e, the exact inference in Bayesian networks is given by

Each instantiation of the expression Pr(Y = y, e) can be computed by summing out all entries in the joint that 
correspond to assignments consistent with y and the evidence variable e. The random variable W corresponds 
to variables are neither query nor evidence. The α parameter corresponds to the normalisation factor for the 
distribution Pr(Y , e) . This normalisation factor comes from some assumptions that are made in Bayes rule40.

Quantum‑like Bayesian network (QLBN).  QLBN can be defined by a pair 〈G, Pg 〉 where G is a directed acyclic 
graph represented by a pair G = (V ,E) . Each vertex vi ∈ V  represents a random variable, and the random vari-
able is a quantum state in the complex Hilbert space HG, but ej ∈ E is a set of directed edges that represent the 
relationship between vertices. Pg is a density operator in the compound state of independent complex Hilbert 
Spaces with different dimensions, and Pg is defined on a fixed basis, so it satisfies the same conditional independ-
ence constraint as BN, except that the actual probability value is replaced by the complex probability amplitude40.

Quantum probabilities are computed using projective rules that involve three steps. First, the probabilities 
for all events are determined from a state vector |z � ∈ H of unit length (i.e.,||z �|2 = 1). This state vector depends 
on the preparation and context (person, stimulus, experimental condition). More is said about this state vector 

(1)Pr(X1,X2, ...XN ) =
N∏

i=1

Pr(Xi

∣∣PaXi )

(2)Pr(Y |E = e ) = αPr(Y , e) = α
∑

ω∈W
Pr(Y , e,ω), where α = 1∑

y∈Y Pr(Y , e)
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later, but for the time being, assume it is known. Second, to each event there is a corresponding projection opera-
tor Px that projects each state vector |z � ∈ H onto event. Finally, probability of an event is equal to the squared 
length of this projection:

Projection operators are characterized as being Hermitian and idempotent. To say P is Hermitian means that 
P = P† ; in matrix terms, for every i and j, the entry Pi,j in row i, column j of P and the entry Pj,i in row j, column 
i of P are complex conjugates of each other. To say P is idempotent means P2 = P . Figure 1 illustrates the idea 
of projective probability. In Fig. 1, the squared length of the projection of |z � onto the event is the probability of 
the event given the state |z �.

In40, Jerome R. Busemeyer carried out a detailed derivation of the quantum probability distribution of single 
variable and multiple variables, which will not be repeated in this paper. QLBN is described in more detail below.

Let HG be a complex Hilbert space representing a QLBN, and let H1 ∈ HG ,H2 ∈ HG , . . . ,Hn ∈ HG be a col-
lection of different Hilbert Spaces that make up QLBN. The network HG of these Hilbert Spaces is defined as 
the tensor product of each Hilbert space: HG = H1 ⊗H2 ⊗ · · · ⊗Hn . The dimension of HG corresponds to the 
size of the full joint probability distribution. The random variables that constitute the network are represented 
by quantum states. This means that the random variables are represented as complex probability amplitudes 
rather than real numbers in BN. In QLBN, two types of quantum states need to be distinguished: (1) the state 
corresponding to the root node and (2) the state corresponding to the child node. The root node corresponds to 
the quantum pure state. It can be described by the following formula:

And the |0� and |1� is called the basis state and corresponds to the basis: [1, 0]T and [0, 1]T . The variable α0 and α1 
corresponds to the complex probability amplitude of the form: 

√
reiθ , r ∈ R . On the other hand, the child nodes 

represent the statistical distribution of different quantum states. This indicates that the child node is represented 
as a set, in which the conditional probabilities are different quantum states in the set41. It can be described in 
Figs. 2 and 3. Figure 2 shows the representation of the pure state (root node), and Fig. 3 shows the representa-
tion of the set of states (child nodes). Among them, since quantum probability amplitudes are represented in 
complex numbers, a quantum state can be represented geometrically in different ways depending on the phase 
of the complex amplitudes θ.

In Quantum theory, all independent quantum states contained in a Hilbert space are defined by a superposi-
tion state, represented by the quantum state vector |S� , which contains the occurrence of all the events of the 
system. This can be analogous to the full joint probability distribution of classical probability, except that the 

(3)Pr(X) = |Px|z �|2 = (Px|z �)†(Px |z �) = �z|Px† Px|z� = �z|Px Px|z� = �z|Px |z�

(4)|ψX1� = α0|0� + α1|1�,Where, |α0|2 + |α1|2 = 1

Figure 1.   Projective probability: Pr(x1) =
∣∣Px1 |z �

∣∣2.

Figure 2.   Representation of the pure state (root node).
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probability is expressed by the complex probability amplitude instead of the real numbers. In this sense, super-
position state |Sg � contains all possible events in Hilbert space HG , given by:

where k1, k2, . . . , kn corresponds to the basis of each quantum state in the network.
The purpose of the density operator Pg is to describe a system in which we can calculate the probability of 

finding each state in the network. The implementation method is to calculate the density operator through the 
cross product of superposition states |Sg �41:

The density operator Pg corresponds to a n× n Hermitian matrix, where n is the number of quantum states 
in the network, which contains the full joint probability distribution of classical probability if we sum the ele-
ments of the main diagonal.

Density operators also contain quantum interference terms in non-diagonal elements, which are at the heart of 
the model. It is through these non-diagonal elements that one can obtain the quantum interference effect during 
inference, thus deviating from completely rational probabilistic reasoning. It can be seen that quantum states in 
QLBN allow different levels of deterministic representation, which can be concreted in Fig. 4: |ψ1� is a perfectly 
rational and optimal decision (completely classic), to follow the expected utility axiom (closely related to the 
rational choice theory in economics)42, |ψ2� and |ψ3� for the prediction of sub-optimal decisions deviating from 
the expected utility theory, but still provide the satisfaction of the utility (associated with bounded rationality 
theory), |ψ4� for irrational decision43 (Quantum) completely, reflects decision choices that lead to less efficient 
use (associated with contradictory decisions and cognitive biases).

In the process of inference, subgroups of the quantum system need to be traced from the large system repre-
sented by the density operator Pg , and partial tracking algorithm is used according to41:

At the same time, the calculated complex probability amplitude is converted to the actual probability value. 
Given a certain evidence variable e, the quantum edge probability of the discrete random variable is obtained, 
and the scores obtained are normalized:

According to the expansion of the above formula, the quantum marginalization formula (10) is obtained, 
which is composed of two parts: the first part represents the classical probability, and the second part represents 
the quantum interference term, which is expressed by Formula (11):

(5)|Sg � =
∑

k1,k2,...,kn

∏

j∈G
�

x=j
∣∣∣P⊣ψx=j

|k1� ⊗ |k2� ⊗ . . .⊗ |kn�.

(6)
Pg = |Sg ��Sg | =





|α0|2 α0α1
∗

α1α0
∗ |α1|2

· · · α0αn−1
∗

α1αn−1
∗

...
. . .

...
αn−1α0

∗ αn−1α1
∗ · · · |αn−1|2




,

Where |α0|2 + |α1|2 + · · · + |αn−1|2 = 1

(7)Diag(Pg ) = Pr(X1, ...,Xn) =
n∏

i=1

Pr(Xi

∣∣PaXi )

(8)Pg (X) = TrY [Pg (X,Y)]

(9)Pr(X|e) = α

∣∣∣∣∣∣

∑

y

N∏

k=1

ψ(Xk|Parents(Xk), e, y)

∣∣∣∣∣∣

2

Figure 3.   Representation of the state set (child nodes).
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In the above formula, if θi − θj = π/2 , then cos(θi − θj) = 0 , it means that the quantum interference term is 
canceled and the QLBN collapses into a classical BN. In other words, we can think of QLBN as a more general 
and abstract model of classical networks because it represents both classical and quantum behavior.

For normalization purposes, we assume that the decision maker is subjected to the same quantum interfer-
ence term, i.e. (θi − θj) = θ . If cosθ = 1 , then θ = 0+ 2kπ , k ∈ Z , this is equivalent to the maximum phase-
long interference that can be achieved by quantum probabilistic inference. Similarly, at that time cosθ = −1 , 
θ = π + 2kπ , k ∈ Z , the minimal destructive interference is achieved, at that time θ ∈ [0,π ] , the probability 
inference calculated by using quantum probability theory can have different ranges of all possible probability 
values. Therefore, the size of the value θ represents the uncertainty in the decision-making process.

To sum up, quantum probability has wider physical meaning and properties than classical probability. Meas-
urement is an important way to transform the illusory world of quantum into the real world, and human con-
sciousness itself is transforming various possibilities into reality. This makes many scientists and philosophers 
think that quantum probability can not only describe the microscopic particle world, but also describe human 
consciousness and cognitive behavior39.

Comparison of the three models (classical game model, CPT model and QGT model).  In the 
context of related work in Part II, quantum decision model is the method of this paper to try to solve the irra-
tional behavior and interaction of human traffic participants in autonomous driving. The following paper will 
compare the three models, so as to further illustrate the necessity of adopting quantum decision method in this 
paper.

Game model based on Markov (classical game model).  Assuming that two decision makers T and I play a game, 
the strategies that can be adopted are p and y. The income matrix is constructed as follows (Table 1):

All the situations faced by decision makers are defined in a space, which includes four ground States that 
decision makers may encounter16: IpTp, IpTy, IyTp and IyTy, where IiTj is that decision maker T made the decision 
of action j after decision maker I taking action i, subscript ‘p’ indicates taking strategy p, and ‘y’ indicates taking 
strategy y. These four ground States constitute a four-dimensional dynamic Markov model, which is independent 

(10)Pr(X|e) = α

|Y |∑

i=1

∣∣∣∣∣

N∏

k

ψ(Xk|Parents(Xk), e, y = i)

∣∣∣∣∣

2

+ 2 · Interference

(11)

Interferencr =
|Y−1|∑

i=1

|Y |∑

j=i+1

∣∣∣∣∣

N∏

k

ψ(Xk|Parents(Xk), e, y = i)

∣∣∣∣∣ ·
∣∣∣∣∣

N∏

k

ψ(Xk|Parents(Xk), e, y = j)

∣∣∣∣∣ · cos(θi − θj)

Figure 4.   QLBN use quantum states instead of nodes.

Table 1.   The payoff matrix of both sides in the game.

Decision maker T adopts strategy p Decision maker T adopts strategy y

Decision maker I adopts strategy p I: 10, T: 10 I: 25, T: 5

Decision maker I adopts strategy y I: 5, T: 25 I: 20, T: 20
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of each other and represents all possible beliefs and behaviors of decision makers. Mathematically, these four 
ground states are regarded as four basis vectors of a Hilbert space, which are represented by a column vector:

This column dimension shows the probability of all possible situations, ψij shows the probability of decider T 
in IiTj and 

∑
i

∑
jψij = 1 . The following assumptions are made: when decision maker T doesn’t know I’s behavior, 

the probability of each ground state is the same, that is, 0.25. When decision maker T knows I’s behavior, the 
corresponding ground States are equally distributed. Then the initial behavior state vector of decision maker T is:

where, ψ0(0) , ψ1(0) , ψ2(0) , respectively, represents the initial behavior state vector of decision maker T who does 
not know I’s behavior, decision maker T who knows I’s intention to adopt strategy p and decision maker T who 
knows I’s intention to adopt strategy y, after time t, the initial vector will become the final vector ψ0(t) , ψ1(t) , 
ψ2(t) , it also represents the completion of the decision. This dynamic process can be described by the solution 
of Kolmogorov forward equation:

where, KA is the strength matrix, which is the key to the solution of the equation and is related to the income 
matrix under different conditions. Finally, the strength matrix is described as:

where, ui are utility functions related to the difference between the benefits of decision makers under different 
decision-making conditions. In classical Markov dynamic decision-making, the value is limited to positive real 
numbers44. For example, the meaning of up is expressed as equation:

where, Xpp and Xpy respectively represent the profit value of decision maker T adopting strategy p and y, after 
decision maker T knows that I adopts strategy p, in Table 2, Xpp = 10 and Xpy  = 5, so up  = uy = u(5).

When decision maker T executes the classic Markov dynamic decision, all the current situations are taken 
into consideration. For example, to calculate the probability of decision maker T taking strategy p is to add the 
elements of the first and third lines of ψ(t) , and the same applies to other cases, namely:

Cumulative prospects theoretical (CPT) model.  Let {a} = {a1, a2 . . . , an} is a set of n possible actions,for each 
action ai , the possible state set is defined as {xi} = {xi,1, xi,2 . . . , xi,m} , where xi,j ∈ R , and i = 1, . . . , n, j = 1, . . . ,m. 
The probability of each state is expressed as pi,j = p(xi,j). and satisfies that 

∑m
j pi,j = 1 , definition u(xi,j , ai) is the 

utility function of each pair of actions-state, then under each decision ai , the possible prospect can be expressed 
as Pi = (u(ai), pi) , where u(ai) = [u

(
xi,1, ai

)
, u
(
xi,2, ai

)
, . . . , u

(
xi,m, ai

)
]T is the utility vector defined on the 

possible state set,pi = [p
(
xi,1

)
, p
(
xi,2

)
, . . . , p

(
xi,m

)
]T is the probability vector corresponding to {xi} , and the 

expected utility U of each decision can be written as U(ai) = U(Pi) =
∑m

j=1 u
(
xi,j , ai

)
p
(
xi,j

)
.

Cumulative Prospect Theory (CPT), proposed by Kahneman and Tversky, expounds many biased or irra-
tional human behaviors in a unified way. Compared with the traditional Expected Utility Theory (EUT), CPT 
introduces two additional concepts in the definition of prospect: (1) P: value function V  defined in utility, (2) 
decision weight function π defined in cumulative probability (as shown in Fig. 5). Each action is evaluated by 
the following equation:

(12)ψ =
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ψyp

ψyy





(13)ψ0(0) =
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0.25
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
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0.5
0
0



,ψ2(0) =





0
0
0.5
0.5





(14)ψ(t) = etKAψ(0)

(15)KA =
[
KAp 0
0 KAy

]
,KAi =

[
−1 ui
1 −ui

]

(16)up = u(Xpp − Xpy)

(17)pp = ψpp + ψyp

(18)V(ai) = V(Pi) =
m∑

j=1

v
(
u+

(
xi,j , ai

))
π+
j + v

(
u−

(
xi,j , ai

))
π−
j

Table 2.   Comparison of the success rates in CPT model and QGT model.

Model CPT QGT

Success rates 92.53% 97.70%
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where, the function V  is a strictly increasing function, and u+ and u− are the gains and losses of u compared with 
the reference utility u0 . Decision weight is defined as:

where, w± is a strictly increasing function, in general, V(u) is convex for u ≥ u0 (gain), when u ≤ u0  (loss), V(u) 
is concave and the loss is steeper than the gain. Figure 5a shows an example of a value function when u0 = 0 is 
set as a reference utility. Many experimental studies have shown that the representative function form of V  and 
w can be written

where, α,β , γ , δ ∈ (0, 1] , and � ≥ 1 , in Fig. 5b, this decision weight function can well describe the observed 
behavior that humans tend to overestimate the occurrence of low probability events and underestimate the 
occurrence of high probability events.

CPT model assumes that the decision-maker chooses the behavior that produces the maximum value defined 
in (18), that is,

Quantum game theoretical (QGT) model.  In the QGT model, decision maker T is in a superposition state 
before observing I, after observation, the superposition state is transformed into a possible ground state, the 
probability of its transformation is the square of the magnitude of the probability amplitude ( ψij ) and it satisfies 
the uniformity, as shown in Eq. (22) :

In the QGT model, the initial behavior state vector of the decision maker is

In the same way as the classical Markov dynamic model, after time t, the initial vector will evolve into the 
final vectors ψ0(t),ψ1(t),ψ2(t) , which also represent the completion of the decision. This dynamic process can 
be described by the solution of Schrodinger equation:

(19)
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(
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(21)a∗ = argmaxai∈{a}{V(ai)} = {V(a1), . . . ,V(an)}
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Figure 5.   Examples of the value function and weighting function.
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where, HA is a Hamiltonian matrix, which is the key to the solution of the equation,It is similar to the construc-
tion of the strength matrix, and finally the Hamiltonian matrix is described as:

Different from the classical Markov decision model, utility functions ui range from −1 to 1 . At the same time, 
in the decision model of QGT, we should consider the influence of irrational behavior, which Busemeyer called 
"cognitive disorder"34. The relationship between belief and behavior can be expressed by the following matrix:

The irrational behavior matrix is added to the decision model of QGT, and a new Hamiltonian matrix 
(HA +HB) is constructed and brought into the solution of Schrodinger equation.

However, the above-mentioned quantum game model method has some problems: when decision maker T 
knows the intent of I, it can find the solutions of ψ1(t) and ψ2(t) , When I’s intention is unknown, the solution 
of ψ0(t) cannot be obtained by the above method, the reasons are as follows: (1) The interaction is not fully 
considered, and decision-maker T only considers it from its own profit dimension, thus ignoring it. In fact, in 
the case of uncertainty about I’s intention, I’s benefits should be considered. (2) The utility function is related 
to the profit value of both parties, so the profit of I need not be considered when determining the intention of 
I, but it needs to be considered when the intention of I is uncertain, in the past, the utility function obtained 
up = uy = u(5) according to Eq. (16), but in fact, up is not necessarily equal to uy , so the utility function needs 
to be processed in the next improvement process.

When the decision maker T doesn’t know I’s intention, the QGT model (Eqs. 24 and 25) built before is 
improved, and the benefits of decision maker T and I are considered, make the following improvements: recon-
struct the Hamiltonian matrix, and add the benefits of I when constructing, and get:

where, H00 is a newly constructed Hamiltonian matrix; H01 is the profit of decision maker T; H02 is the profit of 
I; Hp1/Hy1 is Hamiltonian matrix when I adopts strategy p/y; up1/uy1 is when I takes strategy p/y, the difference 
between the profit of I earned by decision maker T adopting strategy p and the profit of I earned by decision 
maker T adopting strategy y.

The newly constructed matrix above solves the first problem, and then, it needs to solve the problem of 
oversimplification of utility function, that is, how to define a utility function that can effectively reflect the dif-
ference between the benefits of decision makers. We choose to use the value function in expectation theory, 
such as Eq. (28), and make proper normalization to meet the requirements of QGT model for the value range 
of utility function.

where, Dp represents when I adopts strategy p, the difference in value between the decision maker T who chooses 
to take strategy p, profit is 10, and who chooses to take strategy y, profit is 5, Dp is normalized with a hyperbolic 
tangent function similar to logistic regression: Dp = 10a − 5a ; Dy is when I adopts strategy y, the difference in 
value between the decision maker T who chooses to take strategy p, profit is 25, and who chooses to take strat-
egy y, profit is 20, in a similar way, Dy = 25a − 20a , power a is the risk aversion index of decision maker T in its 
own income dimension, with the value between 0 and 1. Dp1 is when I adopts strategy p, the difference in value 
between the decision maker T who chooses to take strategy p, I gets the profit is 10, and who chooses to take 
strategy y, I gets the profit is 25: Dp1  = 10b − 25b ; Dy1 is when I adopts strategy y, the difference in value between 
the decision maker T who chooses to take strategy p, I gets the profit is 5, and who chooses to take strategy y, B 
gets the profit is 20, Dy1 = 5b − 20b , power b is the risk aversion index of decision maker T in the income dimen-
sion of I. In the game in real time, in order to ensure the benefits of decision maker T, the benefits of decision 
maker T are greater than those of decision maker I,so the choice between a and b is 0 < b < a < 1 . In this paper, 
b = a/4 , because the separation effect is most obvious at this time.
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Case study
In this paper, two car game scene as shown in Fig. 6, white car for target vehicle, red car for interact vehicle. The 
two cars were driving side by side at the intersection of the viaduct and the side road, target vehicle need to turn 
left to the viaduct, interact vehicle need to turn right to the side road, the game scenario is created. From the first 
perspective of target vehicle, there are three situations: seeing the interact vehicle trying to speed up and pass, 
seeing the interact vehicle slowing down and yield, and not being sure of the interact vehicle’s intent. What kind 
of decision does the target vehicle make in three situations?

According to the classic Markov dynamic decision model (Eq. 14), when the opponent’s vehicle intention is 
uncertain, the probability of the target vehicle adopting accelerated overtaking is the same as the probability of 
the target vehicle when the opponent wants to accelerate or when the opponent wants to decelerate, which cannot 
explain the separation effect and obviously does not conform to the actual situation, so the process is omitted.

Simulation analysis based on CPT model.  There are two actions for defining vehicles: pass and yield, 
that is, {a} = {ap, ay},under the ap decision, the target vehicle needs to test the possibility that the interact vehicle 
will not yield, which can force the target vehicle to brake without passing by law. However, for ay decision, we 
can assume that it is always successful. Therefore, the prospects of ap and ay are:

where, {ξ tI , ξ tT } is the historical track set of vehicles, I indicates the interact vehicle, T indicates the target vehicle, 
pI ,y indicates the yield probability of interact vehicle, ξ̂I ,y and ξ̂I ,ny is divided into yield track and non-yield track 
of interact vehicle. ξ̂T ,p and ξ̂T ,y divide into the pass track and yield track of target vehicle. Make u0 = 0 . Look-
ing back at the CPT models defined in (18)–(21), the CPT values of target vehicle under different decisions can 
be written as:

Then write the decision of target vehicle as

The method in reference45 obtains the parameters in CPT by Inverse Reinforcement Learning (IRL), assum-
ing that u is a linear combination of some characteristics, including speed, acceleration, emergency braking 
and safety. The learned decision weighting function is shown in Fig. 7. CPT model does capture people’s choice 
pattern, that is, low probability events are often overestimated, while high probability events are often under-
estimated. This result is consistent with the research on human behavior in other fields such as economics, 
investment and waiting paradox.

From the simulation results (Fig. 7), the CPT model can solve the irrational problem in automatic driving 
decision-making, but this paper would like to put forward three different views: (1) The probability value cal-
culated by the CPT is based on the classical probability, and does not take into account the situation when the 
superposition state is generated,for example, when setting the action set, there are only two actions: pass and 
yeild, but in actual scenes, many interactive vehicles will be hesitant. (2) When the cumulative prospect theory 
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Figure 6.   Game scene in complex traffic environment.
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uses IRL to learn parameters, it is assumed that the interact vehicle will not yield when the target vehicle wants 
to pass, and the original initial speed of the interact vehicle will remain unchanged, this assumption is not in line 
with the actual situation,if the interact vehicle does not yield, the original speed should be increased to prompt 
the target vehicle, so the result obtained at this time will be different from the actual situation. (3) CPT assumes 
that when the interact vehicle yields, the target vehicle will pass 100%, this assumption is completely rational 
and does not conform to the actual situation.

Simulation analysis based on QGT model.  Compared with the classical Markov decision model, the 
results obtained by the QGT model can better explain the separation effect. MATLAB simulation platform is 
used for simulation, when the interact vehicle’s intention is clear, the standard quantum game model is used. The 
variable parameters are quantum entanglement factor γ and utility function u . The results are shown in Figs. 8 
and 9.

Figure 7.   The learned decision weighting function (red curve).

Figure 8.   Probability of the target vehicle pass (left:P11)/yeild (right:P12) when knowing that interact vehicle 
intends to pass (t = π/2).

Figure 9.   Probability of the target vehicle pass (left:P21)/yeild (right:P22) when knowing that interact vehicle 
intends to yeild (t = π/2).
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When the intention of the interact vehicle ’s vehicle is uncertain, the probability of pass/yeild the vehicle of 
the target vehicle is simulated by improved QGT, and the benefits of both parties are considered from the per-
spective of the opponent’s vehicle, the parameter variables are quantum entanglement factor γ and risk aversion 
index a , and the results are shown in Fig. 10.

In the improved model, when quantum entanglement is 0, the probability of pass or yeild the target vehicle 
collapses to the classical model, which is 0.5, and then fluctuates with the increase of quantum entanglement and 
benefit function, in the case of maximum quantum entanglement, the improved QGT model is more inclined to 
pass (probability value is 0.75), the irrational behavior and the interaction between the two vehicles are consid-
ered in the QGT model, which is more suitable for the actual situation than the CPT model.

Experimental analysis
In order to verify the effectiveness of CPT and QGT, the experimental data set scene is similar to the simulation 
model, in the real scene, vehicles on the two main roads are allowed to change lanes in the red box, so this is the 
center of game decision-making. We trained and tested two models on a data set (Fig. 11) containing 348 pairs 
of interacting trajectories with a sampling frequency of 10 Hz. To learn more generalized results, we slice the 
trajectories into frames with a fixed length using moving windows. Each frame contains the trajectories in 1 s. 
Thus, all 348 pairs of interacting trajectories generate 13,920 frames.

The verification results of the two models are shown in the following table (Table 2). The results show that 
the decision-making accuracy of the QGT model is higher than CPT model. The main reasons are as follows: 
(1) The probability value calculated by CPT model is based on the classical probability calculation, without 
considering the situation of superposition state. For example, when setting the action set, there are only two 
actions of speeding through and slowing down, but there is no state between them, therefore, this method does 
not fundamentally solve the irrational decision-making problem; (2) In reference45, inverse reinforcement learn-
ing (IRL) for parameters in CPT did not take into account the influence of interaction between the two sides 
of the interaction, resulting in a relatively low success rate; (3) Compared with CPT, QGT takes into account 
the superposition state in the action set, which is more consistent with the actual situation without completely 
rational assumption.

However, we also need to demonstrate the benefits of QGT in terms of data efficiency. Neural network model 
achieves good results in specific scenarios through a large number of data-driven methods45, while QGT does 
not require a large number of data-driven methods. If our results are similar to or even more advantageous than 
the neural network model, the QGT proposed by us will have more theoretical value.

The neural network algorithm is applied to the data set (Fig. 11). To achieve better performance for the 
learning-based model, we have conducted two sets of experiments for the training of the neural network:

Figure 10.   Probability of the target vehicle pass (left:Pr1)/yeild (right:Pr2) when the intention of interact 
vehicle is uncertain after optimization (t = π/2).

Figure 11.   In the interaction scenes collected from the real road data set, the area where the game takes place is 
marked with the red box.



13

Vol.:(0123456789)

Scientific Reports |        (2022) 12:11042  | https://doi.org/10.1038/s41598-022-14737-2

www.nature.com/scientificreports/

Experiment 1: randomly shuffle all the trajectory pairs and select 80% of them for training and the other 20% 
for testing. The success rate is 65% for testing.
Experiment 2: directly shuffle all frames for the neural network and randomly select 80% for training and 
20% for testing. The success rate is 97% for testing.

The large discrepancy between the testing accuracies of the two experiments with the NN model is mainly 
due to the over-fitting problem cause by the data insufficiency. In experiment 1, it showed that the NN model 
learned on 80% of the trajectory pairs cannot be well generalized to other interaction pairs.

Table 3 shows the results of the comparison. The results show that: QGT model compared to neural network 
model, the result is close to and the QGT model does not need to be driven by a large amount of data, which 
makes the QGT model more efficient than the neural network model.

Conclusion and prospect
In this study, the QGT model was used to analyze the interaction between two vehicles, compared with the classi-
cal Markov dynamic decision model. This model is more practical and successfully explains the separation effect. 
Compared with the CPT model, the QGT model takes the superposition state in the action set into consideration 
and abandons the assumption of complete rationality, which is more consistent with the actual situation. When 
the opponent’s vehicle intention is known, only the uncertainty and irrational behavior in the environment are 
considered, and the probability value fitting the actual situation is obtained. Otherwise, the profit value of both 
sides of the game will be also considered from the perspective of the opponent’s vehicle, and the actual result 
is obtained. According to the case analysis, the QGT model owns more advantages than the classical Markov 
dynamic decision model and CPT model in explaining the uncertainty and irrational behavior and interaction 
of other traffic participants. The CPT model and QGT model are further verified by data sets, showing that the 
QGT model has more advantages in dealing with game scene decisions. At the same time, compared to neural 
network model, the result of QGT model is close to and the QGT model does not need to be driven by a large 
amount of data, which makes the QGT model more efficient than the neural network model.

In the following work, more complex traffic scenes (such as real road data sets) are cited, and their interac-
tion with other traffic participants in automatic driving is further explored by combining quantum theory with 
deep learning.

Although the application research is only carried out at the simple two-car game scenario, the research 
method adopted is also instructive and referential for more complex scenes in automatic driving. This paper 
firstly attempt to apply QGT to automatic driving, providing a new reference frame for the study of decision-
making problem of bounded rational behavior interaction of human traffic participants. We believe that with the 
further development of quantum decision theory and the continuous exploration of researchers, its application 
in autonomous driving will be more popular and in-depth.
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