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as Represented by Turing Machines 
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In this paper a microscopic quantum mechanical model of computers as 
represented by Turing machines is constructed. It is shown that for each 
number Nand Turing machine Q there exists a Hamiltonian HN ~ and a class 
of appropriate initial states such that if ~QN(0) is such an initial state, then 
~FoN(t) = exp(--iHNQt) ~on(0) correctly describes at times t3, t6,..., tan 
model states that correspond to the completion of the first, second,..., Nth 
computation step of Q. The model parameters can be adjusted so that for an 
arbitrary time interval A around re, tG,..., taN, the "machine" part of tFQN(t) 
is stationary. 

KEY WORDS: Computer as a physical system; microscopic Hamiltonian 
models of computers; Schr6dinger equation description of Turing machines; 
Coleman model approximation; closed conservative system; quantum spin 
lattices. 

1. I N T R O D U C T I O N  

There are  many  reasons to  a t t empt  the cons t ruc t ion  of  a q u a n t u m  mechanical  
model  of  compute rs  and  the compu ta t i on  process.  Compute r s  are large, finite 
physical  systems which p lay  an impor t an t  role  in science today.  The success 
in developing  simple q u a n t u m  mechanical  models  o f  complex  systems such 
as lat t ice systems, r ing models ,  ~ and  the measurement  process  (~-6l en- 
courages  one to t ry  to develop such models  for  these more  complex processes.  

Of  poten t ia l ly  greater  impor tance  is the fact  tha t  if  one is to  make  any 
progress  toward  giving a q u a n t u m  mechanica l  descr ip t ion  of  intel l igent 
b e i n g s - - i f  it  is poss ible  at  a lW,8)- - then  one mus t  first give such a descr ip t ion  
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of computers and the computation process. In particular, the computation 
process consists of a sequence of elementary decision procedures in which the 
operation carried out in the (n + 1)th step depends on the results obtained 
from the operation done in the nth step. To construct a quantum mechanical 
model of the computation process means that one can construct a quantum 
mechanical model of at least simple decision procedures. A priori it is not 
clear that this is possible. 

A further question arises regarding the possibility of constructing a 
model of the computation process which is not only quantum mechanical but 
is a Hamiltonian model. Success in this would mean that it is possible to 
model the computer as an evolving closed, conservative system in quantum 
mechanics. There are several reasons for thinking that this might not be 
possible. All computers built so far are open dissipative systems requiring an 
energy input to run. Also, complex organized systems, which are much dis- 
cussed/9~ are regarded as open dissipative systems which require energy input 
to maintain their complexity. 

Another source of doubt arises from work done on fundamental limita- 
tions of the computation process itself. Some of this work (1~ makes the 
point that computation steps must often erase information and are thus 
logically (and physically) irreversible. As a result an energy dissipation of the 
order of kT per bit erased is required. On the other hand, a computer can 
always be made logically reversible by having it create and save a history of 
its computation. (14~ Also, the existence of logically reversible computers (as 
Turing machines) which are equivalent to the usual ones and which erase 
their own history tapes has been demonstrated.(14! It is assumed, however, (z4~ 
that these reversible machines can be modeled by thermodynamically 
reversible systems which dissipate arbitrarily little energy per step if operated 
sufficiently slowly. Other types (~a~ of models also require that the computer 
lose energy in each step, where the energy loss can be made arbitrarily small 
if the computation proceeds sufficiently slowly. 

Another point takes cognizance of the fact that, as already noted, steps 
of a computation process are decision procedures. It is suggested (zS~ that 
since the computer acts on the basis of information read or measured in a 
short time, the Heisenberg uncertainty principle limits the information pro- 
cessing rate of the computer. 

These considerations suggest that it may be impossible even in principle 
to construct a quantum mechanical Hamiltonian model of the computation 
process. The reason is that any such model evolves as an isolated system with 
a constant total energy. The point of this paper is to suggest, by construction 
of such models, that this may not be the case. 

The construction of quantum mechanical models of the computation 
process which are completely satisfactory in all respects is a large undertaking. 
Thus it is appropriate to proceed in stages by first making some simplifying 
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approximations and assumptions. These can (one hopes) be removed in later 
work. 

Here several simplifying approximations are made. First this work will 
be limited to constructing models of the computation process as represented 
by Turing machines/16'17~ Turing machines have the disadvantage that they 
are very slow--many steps are needed to carry out simple operations. How- 
ever, this limitation has the advantage that only one type of model need be 
considered here, and the model is quite simple. Also, this is in essence no 
limitation, in that Turing machines are very powerful; any digital computer 
can be replaced by a Turing machine of equal or greater computing power. 

The main approximation made here is that the Coleman model ~6,18~ is 
used for the kinetic energy part of the Hamiltonian. In this model the kinetic 
energy operator V2/2m is replaced by v- V, where v is a fixed velocity. This has 
the consequence that all systems move with constant velocity, energy is pro- 
portional to momentum, and there is no wave packet spreading. 

This approximation is made here in the same spirit as was done by 
Bell <6~ and Hepp. ~18~ It greatly simplifies the mathematical analysis while 
leaving intact the essential quantum mechanical nature of the process. In 
particular, the only use made here of the Coleman model is to turn on and off, 
over and over again, three separate parts of the interaction Hamiltonian 
which correspond to three types of model steps. This is done by having a 
sequence of particles move past a fixed system and interact with it by means 
of a short-range potential. However, all the complexity of the process resides 
in the interaction Hamiltonian, which is independent of the Coleman model 
approximation. 

Another approximation that will be made is that the model will be 
restricted to contain a finite number of degrees of freedom. This approxima- 
tion is made here to avoid for this first stage possible mathematical problems 
associated with the quantum mechanics of systems with an infinite number of 
degrees of freedom. This approximation means that the models of Turing 
machines constructed here will contain tapes of finite length and that they will 
correctly describe a finite number of steps of a computation process. The 
usual Turing machine models contain one or more tapes of infinite length and 
correctly describe all computation processes of a finite or infinite number of 
steps. On the other hand, all real computers are systems with a finite number 
of degrees of freedom. In this sense the above restriction is not a restriction, 
as it correctly represents the real situation. Also, it has been pointed out ~17) 
that Turing machines require infinite tapes only in the limit of an infinite 
number of steps. 

Finally one notes that the models of the computation process constructed 
here all create and save a history tape. Thus the possibility of constructing a 
quantum mechanical Hamiltonian model of a computation process which 
erases its own history tape remains an open question. 
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The organization of this paper is as follows: The relevant material on 
Turing machines is reviewed in Section 2. In Section 3 the component systems 
and transformation operators that are needed are assembled. Also, the 
method of treating elementary decision procedures and the necessity of adding 
record tapes is discussed. 

Section 4 discusses the model calculation procedure as a sequence of 
three steps--record, operate, and shift-repeated over and over. The interaction 
Hamiltonians for the three steps are also given and their properties are dis- 
cussed. These Hamiltonians.can be used to give a time-dependent Hamiltonian 
description of the process. However, a time-independent Hamiltonian is 
desired. This is obtained by extending the model to include control systems 
which interact with the machine. The final Hamiltonians and model are given 
in Section 5, as is the main result noted earlier. 

The proof of the main result, which is given as a theorem, is given in the 
Appendix. Properties of the evolving model state are also given in Section 5. 
Section 6 contains a discussion of some further aspects of the model. 

Finally, it should be noted that, as far as the uses made so far of com- 
puters are concerned, it probably <19~ makes no difference whether a com- 
puter is described classically or quantum mechanically, However, there is an 
area of questions which is largely unexplored, where the description used 
may have an effect. 

Consider, for example, the fact that one tests the validity of quantum 
mechanics by carrying out repetitions of an experiment and comparing the 
limit mean so obtained with a theoretical expectation value calculated on a 
computer. If the machine used to compute the expectation value is described 
by the same theory (QM) whose validity is being tested, interesting self- 
consistency questions can arise. These questions are meaningless if the com- 
puter is described by a theory (CM) which is different from that whose validity 
is being tested. 

2. T U N I N G  M A C H I N E S  

A Turing machine ~16'17~ consists of a machine and an infinite tape divided 
into cells. Each cell of the tape may be blank or it may contain one one of a 
finite number of symbols. The finite symbol string present on the tape at any 
time is called the tape expression. The machine scans one tape cell at a time 
and can either change the tape symbol or print one if the cell is blank, or shift 
one cell to the right, or one cell to the left, or do nothing. The machine can 
assume any one of a finite number of states called "internal states." 

An elementary Turing machine operation consists of the machine in an 
internal state carrying out one of the above operations on the tape cell it is 
scanning and then going to some other internal state. The operations are 
represented by elementary quadruples of the form a(t, t')b, where a and b 
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denote the initial and final internal machine states, t denotes the symbol 
scanned, and t '  denotes either a symbol or an operation R (shift one cell to 
the right) or L (shift one cell to the left). From now on the blank denoted by 
b, is considered as a symbol. For example, the quadruple az(ss')am means that 
the machine in internal state at in scanning a cell first reads the cell symbol. If  
it sees s, it changes the symbol to s '  and then its internal state changes to am. 
The quadruple a~(bR)ak means that the machine in internal state at shifts one 
cell to the right if the cell scanned is blank. Then it goes into internal state ak. 

l~n order to present machines by sets of quadruples it is necessary to 
adhere to certain conventions. A standard initial state of a calculation is 
represented by the machine being in a designated initial state a~ and scanning 
the blank cell immediately to the left of the first nonblank ceil. The tape 
expression is also in a standard form, which means that at most a finite 
number of cells are nonblank and no two nonblank cells can have a blank 
cell in between. The standard final state is exactly the same, except that the 
machine is in a designated final state at. 

Turing machines can be represented by finite sets of quadruples. In such 
a representation the successive steps in a calculation are determined by the 
quadruples in the set. If  the machine, after completing a step, is in internal 
state am, the next step is determined by that quadruple beginning with am and 
whose second symbol is the symbol in the tape cell being scanned. For a 
calculation to be uniquely determined by a set of quadruples it is necessary 
and sufficient that no two quadruples have the same first two symbols--such 
a set is called deterministic. A calculation terminates if the machine has 
arrived in internal state am and is scanning a cell containing the symbol s and 
no quadruple in the set begins with am and s. A calculation is nonterminating 
if the set of quadruples is such that each step in the calculation always has a 
next step. Whether a particular calculation will terminate or not depends both 
on the set of quadruples and on the initial tape expression. 

The above can be collected together into the following: Every standard 
Turing machine can be represented by a finite deterministic set Q of quad- 
ruples such that at least one quadruple begins with a~ and at least one ends 
with as and no quadruples end with a~ or begin with a~. 

From now on we will suppress the distinction between a Turing machine 
and its representation and will call any Q that satisfies the above a Turing 
machine. 

Here are two examples of standard Turing machines: 

Q1 = {a~(b, R)al; al(b, 1)a2; al(1, 1)a3; 
a3(1, R)al; a2(1, L)a2 ; a2(b, b)al} 

Q~ = {at(b, R)al ; az(1, 1)a2 ; a2(1, R)al ; 
a~(b, L)a~ ; a~(0, 1)a3; a3(1, L)a3 ; a3(b, b)ar} 
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The tape symbols for machine Q1 consist of the blank and the symbol 1. The 
machine Q~ calculates the function f(n) = n + 1 by adding a symbol 1 onto 
a string of l 's before returning to the left of the tape symbol string. Q1 always 
terminates. The tape symbols for Q2 consist of b, 0, and 1. The machine Q2 
changes the first 0 appearing in the tape expression to a 1 before returning to 
its initial scanning position. Q2 may or may not terminate, depending on 
whether the tape expression contains any 0's or not. 

As was noted before, Turing machines are very slow but are very simple 
and powerful--any digital computer, present or contemplated, can be 
replaced by (much slower) Turing machines of equal or better computing 
power. Also, there exist universal Turing machines. A universal Turing 
machine, when given a code or G6del number of any Turing machine Q 
followed by a symbol expression ~ on the input tape, acts like Q and gives as 
output the same expression as Q would, given ~ as input. For more details 
and examples of Turing machines the reader is urged to consult the litera- 
ture.(16,17~ 

3. A Q U A N T U M  M E C H A N I C A L  M O D E L  FOR S T A N D A R D  
T U R I N G  M A C H I N E S  

In order to construct a quantum mechanical model it is first necessary 
to assemble together specific representations for the tape and internal machine 
states as well as operators which represent the elementary operations of the 
tape. Much of the construction will be modeled after the various models of 
the measurement process which have been discussed in the literature. (~-6'18~ 

The final model will be obtained by starting with a simple model and 
extending it in stages. This is done in order to make quite clear why it is 
necessary to expand the model by adding auxiliary systems with specified 
functions. The first simple model consists of a tape T of finite length divided 
into cells, a computation head He which moves along the tape and which 
reads and operates on the symbols in the cells, and a machine M which is 
capable of assuming any one of a finite number of internal states. From now 
on the term "Turing machine" will refer to the system M + T + He plus 
any other added systems. The term "machine" will refer to M only. 

The tape is represented here by a lattice of quantum spin systems of finite 
length. The tape alphabet, which is the set of possible symbols, blank included, 
that can appear in any cell, is assumed to be in one-one correspondence with 
the set of possible spin projections that each of the spin systems is capable of 
assuming. Thus an expression (as a symbol string) of length n corresponds to a 
length-n lattice system in a product state in which the j th  system is in a spin 
projection eigenstate which corresponds to the j th  symbol of the expression. 
A spin lattice of length n is thus suitable for representing all tape expressions 
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of length n or less and written in an alphabet of 2s nonblank symbols, where 
s is the total spin of each system in the lattice (one of the 2s + 1 projections 
represents the blank). 

For  reasons which will be clear later, the tape spin lattice is specialized 
to be of length 2N + 1 with the spin systems occupying positions - N ,  .... 
- 1, 0, 1 ..... N along the x axis. The machine system M corresponds to a single 
system of spin so fixed at the lattice position Xo. The possible internal states 
that M can assume are in one-one correspondence with the spin projections 
of the system. Thus for each Turing machine Q, so must be sufficiently large 
so 2sQ + 1 is greater than or equal to the total number of distinct internal 
machine states appearing in the quadruples of Q. Since s o depends on Q, 
which system one uses in the model to represent M depends on Q. 

The computation head He will be represented in the model by a single 
spinless system which moves along the T lattice. The quantum states for this 
system will be taken to be given by the Hilbert space 12([Z2N+l ]), the space 
of all sequences z: [ -  N, N] --+ C of length 2N + 1. Here C is the set of com- 
plex numbers. 

To facilitate the discussion, from now on the distinction between the 
Turing machine components M, T, and Hc and the physical systems which 
represent them will be, for the most part, suppressed. It will always be clear 
from the context which is being discussed. 

The operators for changing the spin projections, which correspond to 
the internal machine state change represented by some quadruple q, are 
elements of the spin algebra ~IM. If  Uzm is the spin change operator, which 
exchanges the spin projections corresponding to the internal states az and am 
and leaves the others alone, one has 

UzmPm = Pz Uzm 

UzmPz = emSlm (1) 

UtraPn = Pn Ulm if n r l, m 

where P~ is a projection operator onto the spin projection corresponding to 
the machine internal state a,. Since Utm =Sltm, one has the result that U~m 
is self-adjoint and 

U?m = 1 (2) 

The algebra of operators for the spin lattice that represents the tape 9.It is 
given by 

N 

9~T = | % (3) 
j = - N  

where % = B(/;j), the space of bounded linear operators over the (2s + 1)- 
dimensional Hilbert space r 
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The operator that exchanges the symbols v and v' in cell k and leaves 
the other symbols in cell k alone and does not change symbols in other cells, 
Ugv,, satisfies 

U~v,Pv~ = Pv,~ U~, 

U~,P~,k = Pv~U~, (4) 

U~,Pu =PtjU~, if t # v ,v '  or j r  k 

where the projection operators Pu for the symbol t in cell j satisfy 

~t Ptj = 1, PuPt,j = Ptj 3t,t, (5) 

for each j. Note that in general Ptj'Pt,y # 0 i f j  # j ' .  As before, one has 
Ugh. = Ugh, self-adjoint, so 

(Ugh,) ~ = 1 (6) 

Note that in the last paragraph the difference between the tape cell 
symbols and the corresponding spin projections of a spin system at a lattice 
site has been suppressed. We shall continue to do this and use machine 
internal state and tape symbols as parameters for the above operators. 

The reason that the symbol and state changing operators are constructed 
to have the property U 2 = 1 is that, following Bell, (6> the fact that 

e ~ w  = cos a +_ iUsin a (7) 

will be used to construct the Hamiltonian. In particular, things will be 
arranged so that the coefficient a = a(t) = 0 for 0 < t ~< tj and 0 ~< a(t) <~ 
rr/2 for tj ~< t ~< Tj and a(t) = 7r/2 for t >/ ~-j. Thus exp[-iUa(t)] will give, 
as time progresses, the appropriate change on the system. 

The operators that shift the computation head one cell to the left or right 
are elements of B(12(Z2u + 1)) and are defined by 

u ~, ~P~ = e , ,  u ~  (8) 

w h e r e j '  = k  + 1 i f j = k ,  a n d j '  = k  i f j = k  + 1, a n d j '  = j i f j 4 :  k, 
k + 1, and Pj is the projection operator for Hc being at cell site j. One also 
has 

=~N •  ~=N :~N U. 1P~ P-NU~:I (9) U• ~ P_ ~ = PN U• 1 and = 

The operator U~+ 1 is used to shift Hc at k one step to the right and U~ ~ is 
used to shift He at k one step to the left. The U~ 1 also have the property 
given in Eq. (7). 

Probably the most  important element of the construction is the following: 
A Turing machine computation is, in essence, a sequence of decision pro- 
cedures where each operation to be carried out depends on the machine 
internal state and tape symbol being scanned. Overall this can be regarded as 
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an operation in which the machine internal state and tape symbol are both 
read, and the results of the reading determine both the state changing 
operation and the computation head and tape operation. Machine quadruples 
express this quite succinctly. 

Quantum mechanically, one might consider expressing this as follows: 
Measure observable A = ~ aP~ on a system, then, depending on which value 
a is found, carry out the operation given by Ua on the system. The overall 
operation on the system can be expressed by 

~ e- ~Bap a 

where Ba is the self-adjoint operator such that exp(-iB~) = Ua, which is 
supposed to be unitary. 

The desired goal of constructing a Hamiltonian is attained in this paper 
by requiring that the following hold, where c is an arbitrary constant: 

e x p ( - i c  ~ B~P,~) = ~a [exp(-ieBa)]Pa 

However, one can show that this equality holds iff [P~, Ba,] = 0 for all a and 
a'. Now [P~, Ba,] = 0 is just what is not wanted, since, for the case above, it 
means that carrying out the U~ operations has no effect on the system as far 
as the A measurement values are concerned. 

The solution to this problem which is used here is as follows: First 
measure A and transfer the results to a separate record system. Then read the 
record system and, depending on what is read, carry out the corresponding 
operation on the original system. The first step can be described by the 
description of the measuring process given by Von Neumann (~) in which a 
correlation between system eigenstates and apparatus record states evolves by 
the action of a suitable Hamiltonian. 

In this case the second step is expressed by ~ exp[-ieBa | 1] 1 | Pa n. 
However, here one does have 

e x p ( - i c  ~ B~ | Pa R) = ~ exp(-icBa | IR)I | Pa R 
a a 

(10) 

since [B~ | 1, 1 | p R] = 0 for all a, a' (Pa R is the projection operator for 
the record system having outcome a recorded). Equation (10) thus holds even 
if for the eigenprojectors Pa of A, [Pa, Ba,] :fi 0. 

In order to apply this to the quantum mechanical model being construc- 
ted it is necessary to extend the system by adding recording systems. For our 
purposes it is necessary to add a recording head HR and at least one record 
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tape. 3 However, for ease and clarity of exposition, three record tapes, as three 
quantum spin lattices, will be added. The reason is that it is necessary to re- 
cord, for each calculation step. the machine internal state, the symbol in the 
cell being scanned, and the position of the computation head. The reason 
why these three are needed will become clear later. 

Thus three quantum spin lattices RM, Re, and Rp with their associated 
spin algebras ~IR~, 9IRc, and 91R~ are added. The subscripts RM, Rc, and Rp 
stand for record machine, record computation, and record position, respec- 
tively. The algebras all have the same product structure as 91r, i.e., @~= 19~j, 
with 91j a single system spin algebra. The systems in Rc are exactly the same 
as in T, the computation tape spin lattice. However, the spin SM of the systems 
in RM must be such that 2SM + 1 >i the total number of distinct internal 
machine states in the quadruples of Q, and the spin sp of the systems in Rp 
must be such that 2sp + 1 1> 2N + 1. Also, the lattices each have only N 
systems instead of 2N + 1 as needed for ~r .  

Since the initial states of all cells in the record tapes will be blank, the 
desired recording operators are U~ ~', c~, Ubv , and U~ ' ,  which, in the k'th cells 
of the three tapes, exchange a blank for the internal state l, the computation 
symbol v, and the computation head position k, respectively, and make no 
other changes. They satisfy equations like those satisfied by the computation 
tape symbol change operator Uffv,, i.e., like Eqs. (4). 

The states and observables for the recording head HR are described in 
12(ZN) and B(I2(Z~v)), respectively. This Hilbert space and operator algebra are 
exactly the same as those given for the computation head except that the 
sequence length is N instead of 2N + 1 as is needed for the computation head 
and tape. 

It is worthwhile to collect together the results obtained so far and 
explain the different lattice system lengths. The component systems consist of 
a machine, as a system fixed at position x0, and with an internal state spin 
algebra 91M, a computation tape with cells at positions - N, .... 0,..., N described 
as a quantum spin lattice with algebra ~Ir given by Eq. (3), and a computation 
head as a system whose associated algebra is B(12(Z2~+I)). One also has the 
record systems, which consist of a recording head HR as a physical system 
with the associated algebra 9IH, = B(12(ZN)) and three record tapes RM, Rc, 
and Rp. Each of these is modeled as a quantum spin lattice of length N and 
algebras 2IR~, 91Ro, 91R~, which all have the tensor product form@N= ~ j ,  
where ~Ij = B(A~), with ~ the (2s + 1)-dimensional Hilbert space of states 
associated with a spin system with spin s. For RM the spin of each cell system 
must be such that 2s + 1 >/ total number of internal machine states in the 

a Bennett(14~ has extended Turing machines by adding a record tape on which the history of 
the calculation is generated. Our construction here is in some ways similar to his. 
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quadruples of Q. For Rc the spin of each cell system must be the same as for 
the computation tape system, and for Rp the spin of each cell system must be 
equal to N. 

The algebra associated with the overall system ~I~' is just the tensor 
product of the component algebras, or 

9~' = ~IM | ~Hc | 9~ | ~I~, | 9~R~ | ~I~o | 9~Rp (11) 

Since each of these algebras is the set of all bounded linear operators over 
some Hilbert space, one has that 

9~' = B(~o') (12) 

where ~o' ,  the Hilbert space for the whole system, is given by 

H e r e  4/f~ c = [2(Z2N + 1), ~HR = 12(ZN), ~M is a f i n i t e - d i m e n s i o n a l  spin space ,  

and ~ and ~;r ~ ,  and ~ are tensor products of 2N + 1 copies and N 
copies, respectively, of finite-dimensional spin spaces. 

4. C A L C U L A T I O N  P R O C E D U R E  A N D  STEP H A M I L T O N I A N S  

The system will be considered to be started in a standard initial state. 
This is one in which the machine is in internal state at (or i), the computing 
head He is at position 0, and the computation tape has blanks everywhere 
except possibly for a string of symbols of length ~< N, starting at N = 1, and 
extending to the right. Such a string constitutes the input data for the calcula- 
tion. The recording head HR is at position 1, the leftmost cell of the record 
tapes, which go from 1 to N, and all the cells are blank. 

The calculation will proceed by means of an interaction which first reads 
the machine internal state i, the computation tape symbol at the position of 
the computation head b, and the position of the computation head 0, and 
transfers this to the first blank record cells of RM, R c, and Rp. The second step 
is described by an interaction which reads the first record cells and carries 
out the corresponding first computation step transformation on the machine, 
the computation head, and tape spin system. The computation step inter- 
action, which is given by that q in O which begins with ai(b, -)-,  is unique 
since Q is deterministic. The third step consists in shifting the record head to 
the adjacent blank cells. 

The calculation will proceed by repeating over and over again the above 
three steps. It will stop after N computations when the record head reaches 
and records into the Nth or rightmost record cells. The reason that 2N + 1 
tape computation cells with N on each side of the head Hc at its initial 
position are necessary is that how the head moves during the N calculation 
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steps depends not only on Q, which is fixed, but on the input number on the 
computation tape. Thus Q could be such that for some input numbers, He is 
shifted N steps to the left, whereas for others, He moves N steps to the right. 
Thus all possibilities are included by making the tape 2N + 1 units long. 

It is clear from the above that in the model calculation there are three 
types of steps: copy, compute, and shift. Thus for each N and Q there are 
three overall system interaction operators H f  Q, H~ e, and H~ ~ defined as 
follows: 

N N 

H[~ = ~ ~ ~ (Pt | |174174 Mk'|174 (14) 
t eQ v /~=-N k ' = l  

N N 

H~ Q = ~ ~ ~ (gq M| U~ d'| |174 (15) 
qeQ k =  - N  k ' = l  

Ha~e= 1 |  |  | 1 7 4  @1 |  (16) 

These operators are given as sums over tensor products of operators in the 
Component spaces for the systems M, He, T, HR, R~, Re, and Rp in the order 
given. The only exception is in Eq. (15), where U~ cr refers to both Hc and T. 

In Eq. (14) the l sum is over all machine internal states appearing in the 
quadruples of Q, and the v sum is over all computation tape symbols. Pt, Pk, 
P~k, and Pk, are projection operators corresponding to finding the machine 
in internal state l, He at position k, the symbol v in the computation cell k, 
and H~ at position k'. 

In Eq. (15), which describes the computation step, the q sum is over all 
quadruples in Q and is finite by the definition of a Turing machine. Uq M is 
the machine internal state change given by q. If  q is at(-, -)am, then 

Uq M= U M (17) 

UHcr corresponds to the computation described by q. If q is .(v, v')-, then qk 

If  q is -(v, R)-, then 

and if q is -(v, L)-, then 

U q • r  = 1 | Ugh, (18a) k 

U~ cr = Uk+l | 1 (ISb) 

U~ cr = U~_I | 1 (18c) 

PMqk, and PC, are the projection operators corresponding to the internal 
machine state and computation symbol, which are the first two symbols in q, 
being located in cell k' of RM and Re. Thus, if q = at(v, -)- ,  then 

P~, = P~, (19a) 
and 

PqC k = Pg, (19b) 
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In Eq. (16), B is the self-adjoint operator in B(12(ZN)) such that 

e -~B~t2 = g + l  (20) 

where U§ 1 is the unitary shift operator mod N on ls(ZN). That is, 

U+~P,~ = P,~+~U+I (21a) 

f o r n  < N, and 

U+IPN = P1U+I (21b) 

All the terms of the l, v, k, and k' sums in H~ Q are pairwise orthogonal 
and 

l v k" k 

Thus by Eqs. (10), (7), (6) and (4) 

exp( - iH~Qa) 
N N 

= ~ ~ ~ ~ exp[--i(1MHorH~ | UM~'| GO: ' |  V~k')a] 
l eQ  v k =  - N  k ' = l  

x (Pz | Pk | P,z | Pk, | 1R,Rcnp) (22) 

N N 

= 2 7  ~ ~ (cOsa-- il~H~'g" | UMk" | U~c~" | UCy'sina) 
l~Q k =  -N k ' = l  

x (P, | Pb | P ~  | P~, | 1R.noRp) (23) 

From this one sees that H~ ve is similar to a Hamiltonian which describes the 
measurement interaction, between M x Hc x T as the system and an 
RM x Re x Re cell as the instrument, as an evolving correlation between 
the system and instrument. (4) At the time a = t = 0 no correlation exists and 
the pointers are all blank. At the time a = t = ~r/2 a complete correlation 
exists. For  times t > 7r/2 the correlation decreases and oscillates between 
complete correlation and no correlation. 

H~ ~ has a similar structure to H f  Q. It can be seen that the terms in the 
q, k, and k' sums are pairwise orthogonal. In fact the reason the recording 
head H~ is present, and the position of the computation head is recorded, is 
just to secure this orthogonality. 

One has, from Eqs. (1), (2), (4), (6), (8), and (9) 

N N 

exp(-iH~ ea) = ~ ~ ~ exp[-i(Uq ~ | uHcr | 1HBRMRon~,)a] 
q~O k = - N  / c ' = l  

• ( l~ . .~  | P~. | P& | P&, | P b )  + (1 - ~'o) (24) 

where 
N N 

qeQ ~ =  - N  k ' = l  
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The extra term 1 - Pe is present because Q can be such that the sums in 
Eq. (25) do not give PQ = 1. For example, not all possible machine internal 
state-tape symbol combinations need appear as the first two parameters in 
some q in Q. This will be discussed later in connection with the termination of 
a computation. 

As was the case for H~ e one can, by use of Eqs. (1), (3), (4), (6), (8), and 
(9), write 

N N 

exp(- iH~ea)  = ~ ~ ~ [cosa - i(Uq M | ll~T~q~ | ln~RMR~,) sin a] 
q~O k =  - N  / c ' = l  

x (1MHcr | 174174  |  + 1 -ee  (26) 

Again one sees that as the time a = t evolves from 0, each q calculation begins 
and is complete at time t = 7r/2. As t increases beyond ~/2, the calculations 
are undone. 

Equations (20), (24), and (26) show that an appropriate description of the 
calculation can be given by a time-dependent Hamittonian He(t ) which 
becomes //1 e, H~ e, and Ha e in successive time intervals 0-~/2, ~/2-~r, 
7r-3~r/2, etc. More precisely, 

H~ e n = 0 mod 3 

HN~(t) = H~ e if mr~2 < t <<. (n + 1)~/2 and n =  l m o d 3  

H~ e n = 2 mod 3 
(27) 

However, the goal here is to construct a model with a time-independent 
Hamiltonian which successively turns on and off H~ e, H~ ~e, and H~ e with 
a coefficient a(t) approaching 7r/2 in a finite time and remaining at rr/2 there- 
after. In order to do this the model given so far must be extended to include 
control systems which pass by the machine one after another and, by inter- 
acting with the machine, turn on and off Hi  "~ H2 ~ and H2 e. The method 
to be used is essentially that of Bell. (6~ In what follows the index N on H~ e 
will be suppressed. 

5. THE  M O D E L ,  HAIVI ILTONIAN,  A N D  M A I N  RESULT 

The final model used here is shown in Fig. 1. A total of 3N control 
systems pass the machine system located at Xo and interact with it by means 
of a finite-range potential. As each system passes tile machine system it turns 
on the appropriate Hj~ by an amount equal to the accumulated interaction. 
Hje is turned off when the j th  control system is out of range of the machine. 

The rest of the system is as before. That is, one has a calculating head, a 
computation tape, a recording head, and three recording tapes. The scattering 
between the control systems and M is assumed to be one-dimensional. The 
lengths and relative positions of the tapes for the standard initial position are 
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Fig. 1. The final quantum mechanical model. The circles C represent the 3N control 
systems. The rectangles M, He, and HR represent the machine, the computing head, and 
the recording head, respectively. The lines 7', RM, Rc, and Rp represent the computation 
tape and the record tapes for recording the machine internal state, the Tsymbol scanned, 
and the position of He. The fixed machine and tape positions are indicated at the bottom. 

shown. The heads and control systems represent a possible state of affairs 
after several calculation steps have occurred. The machine is assumed to be 
fixed, as on a lattice, at position x0 which is set equal to zero. 

The overall model Hamiltonian for N steps of machine Q, H e, is taken 
to be 

H e = He + H 'o (28) 

where 

and 

8 N  

H 'e = s V ( x j ) H e ( j )  (29a) 
4 = 1  

3Ul  0 
Ho = ~ (29b) 

j= l i ~xt 

In H 'e, which is the complete interaction Hamiltonian, V(xj)  = V(x j  - xo) 

gives the interaction potential between thej th  control system and the machine 
at x0 = 0. We define H e ( j )  by 

//1 e 1 = j rood 3 

H e ( j )  = H~ e if 2 = j m o d 3  

H3 e 0 = j mod 3 

(3o) 

where H~ ~  e, and Ha e are given by Eqs. (14)-(16), respectively. 
An important simplification has been made for H0, the free Hamiltonian, 

in that the Coleman model has been used (6,18~ in Eq. (29b). In this model the 
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particle kinetic energy operator V2/2m is replaced by ~L. V, where v is a fixed 
velocity. All systems move with a fixed velocity, set equal to unity in Eq. 
(29b), and the kinetic energy is proportional to the momentum56~ This model 
is used because it makes the mathematics much more tractable--for instance, 
wave packets evolve without spreading since exp( -  iHot) becomes a displace- 
ment operator. This approximation will be discussed further in Section 6. 

The interaction Hamiltonian has the feature that the interaction between 
the parts of the machine depends on the place label j of the control system. 
Thej th system turns on He(j).  This has been done strictly to keep the model 
simple. If desired, one can slightly improve the model by considering each 
control system to be a moving, spin-1 system where the j th  system has spin 
projection + 1 i f j  = 1 mod 3, 0 i f j  = 2 mod 3, and - 1 i f j  = 0 mod 3, and 
redefining H 'e by 

3N 

H 'e = ~ V(xj)[P+lj | H1 ~ + P0j | H2 ~ + P _ ,  |  ~] 
j = l  

where P+ lj, P0j, and P - l j  are the projection operators for the spin of the j th  
control system corresponding to spin projections + 1, 0, and - 1, respectively. 

In what follows V(x) is assumed to have a finite range. That is, 

V(x) = 0 if Ixl > r (31) 

Also, the strength of V is such that 

V(x) dx = V(x) dx = ~r/2 (32) 
oo f 

The function F(y), which is needed later, is defined by 

L F(y) = V(x) dx (33) 

Clearly, F(r) = ~r/2. 
The Hilbert space and operator algebra for the final model, ~ e  and No, 

are those given by Eqs. (11)-(13) extended to include the control systems. That 
is, 

~Q = ~ c  | ~o '  (34) 
and 

where 

and 

~Ie = 9~c | 9~e' (35) 

3N 

~c = | L2(Rj, dx~) (36) 
J = l  

9~c = B(~c) (37) 



The Computer as a Physical System 579 

The initial state vector of the system, ~Fo(0), at time t = 0 will be chosen 
to represent the initial situation. That is, He at position 0 and HR at position 1, 
the record tapes blank, the only nonblank cells of the computation tape at 
positions > 0, no nonblank cells on T separated by a blank cell, the machine 
in internal state a~, and the control systems all to the left of the machine and 
out of range. Each control system will be represented by a wave packet So 
which has compact support. That is, 

cp (z )=0  if [z I > w (38) 

The overall state at time 0 is given by 
3N 

'I%(0, x~ ..... x ~ )  = | ~0(x~ + d~)'V~(0) = 'v~ x~,..., x~)'I'~n~(0) 
] = 1  

(39) 
where 

%~(0) = r | ego | 'FT | r  | ,r~ (40) 

d s is a spacing parameter which ensures that thej th  particle is localized within 
d s + w and dj - w. In what follows dj will be set equal to jd.  

Here C u is a pure spin state of the machine internal state spin system, 
which is an eigenstate of the spin projection operator that corresponds to the 
initial machine internal state a,. The r is the state of the computing head 
localized at 0. That is, ego ~ 12(Z2N + 1) with Por = r The ~F ~ is a (2N+ 1)- 
fold tensor product of spin states C f  with - N  ~< j ~< N, which correspond 
to the initial symbols in the tape cells. The e l ,  e lZ(ZN) localizes the recording 
head at position 1, and W R = ~FR~ | ~FRo Q ~F% is the tensor product of the 
three lattice spin states which correspond to blank symbols in all cells. 

The time evolution of ~Fo(t) under the action of HQ must now be investi- 
gated. The goal is to show that there exist time intervals/x 1 ..... ASN centered 
about times tz,..., t3N such that for each j, for all t ~ A s, ~F~(t) is in a state 
which, with probability I, corresponds to thej th  model step being completed. 
In fact the following theorem, which is the main result of this paper, can be 
proved. 

Theorem.  To each standard Turing machine Q and each None  can asso- 
ciate a Hamiltonian H e and a class of standard initial states We(0), one for 
each input expression, at time 0, such that if d, r, and w satisfy the inequality 
d > 2r + 2w, then for times t such that t <~ 3 N d  + w + r, ~Fe(t) is given by 

WQ(t, X~,..., X3N) = exp[--iF(x~(t))HQ(n(t))] exp[-�89 - 1)] 

x ... exp[- �89176 exp[--�89 

x exp(-- iHot)  "Fo(O, x l  ..... XaN) (41) 

where F(x,(t))  is given by Eq. (33) and n(t)  is defined to be the smaller of 3N 
or the largest j  such tha t jd  ~< t + w + r. 
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I f  t > 3 N d  + w + r, T o ( t  ) is given by 

~Fe(t, x l  ..... x3•) = e x p [ - l i ~ r H g ( 3 N )  e x p [ - � 8 9  - 1)] 

x -.. exp[-�89 exp( - iHot )~FQ(O,  x l  ..... x3N) (42) 

The proof  of this theorem is given in the Appendix. Here we will discuss 
it and show that it gives the desired results. The restriction on the control 
system wave packets and the potential given by d > 2r + 2w ensures that at 
each time t at most one control system is interacting with the machine local- 
ized at the lattice point 0. (The machine remains fixed at the lattice point 0 
during the interactions with all the control systems.) This can b e  seen by 
noting that for the Coleman model used here, Eq. (30), 

3N 

e-~HotWe(O, x~ ..... Xsx) = @ q~(xj + j d  - t)~F~nt(0) (43) 
j = l  

Thus the free Hamiltonian shifts the control systems a distance t to the right. 
The control system j interacts with the machine if, for some xj ,  V ( x j ) ~ ( x j  + 

j d  - t)  # O. But this can happen if and only i f j  is such that t - w - r ~< 
j d  <~ t + w + r [Eqs. (31) and (38)]. I f d  > 2w + 2r, there is at most  o n e j  
for which these two inequalities are satisfied. 

We define n(t )  to denote, at any time t, either the control system that 
is interacting with the machine or, if none is interacting, the one that has just 
completed interacting with the machine. As before, the j th  control system is 
interacting if, for some xj ,  V(xy)~(x j  + j d  - t)  # O, which happens if and 
only if t - w - r < j d  < t + w + r. I f  t is such that no system is inter- 
acting, then the j value of the one that has just finished is the largest j such 
t ha t j d  < t - w - r, which is also the largest j  such t h a t j d  < t + w + r. 

Note that the special form of We(t) given by Eqs. (41) and (42) does not 
hold in general. I t  holds only for the restrictions on V, % and d noted above. 
This is quite reasonable even for real computers in that appropriate initial 
states for a computer plus input system are a small set of all possible states for 
the overall system. 

In order to follow the structure of We(t ) as time increases, it is noted, 
from Eq. (39) and the structure of H e, that one can commute exp( iHot )  We(O) 
past all the other factors in Eq. (41) to obtain 

We(t ,  x l , . . . ,  xsz~) 

= [exp( -  iHot)  Wc(o,  x l , . . . ,  X3N)] 

X exp[-- iF(x~<t~)He(n(t))] ... e x p [ -  �89 Wbnt(0) (44) 

We(t ,  ~ x ~oJ~tt,~ (45) 

Since 
8N 

Wc(t ,  x l  ..... x3N) = Q q~(xj + j d  - t )  
] = 1  
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the computation progress is given by the right-hand factors. From Eqs. (23), 
(30), and (40) one sees that 

e x p [ -  �89 ~'b~t(0) 

(46) 

where p~r = C M3z,~ ' pkr = r and PuCf~ = r ~ have been 
used. Also, the only term in the v sum that contributes is v = b, since initially 
He scans a blank symbol. 

Equation (46) gives the state showing the completion of the first copying 
step. For  the next step one has from Eqs. (24) and (25) 

e x p [ -  �89 exp[ - �89 ~b~(0) 

= (--i)2UMr M @ U~IT(r ~c @ P~oVs T) @ ~bf= | U~F== 

| Uc{W =e | U~o~F== (47) 

where 
Pkr ~ = Cf=Sk,, 1, pM,fMlW'R m R 

p c  T r c ~ , , .  = u 2 , v . ~  s.,~) ~, e L  V~o~"= = u;o~'w= ~ o q l .  v bb  J -  ~ , 

have been used. q~ denotes any quadruple in Q beginning with a~, and q(2) 
denotes the second element of q, which is always a computation tape symbol. 
The combination 3q,q, 3q(2),b selects out that q in Q whose first symbol is a~ and 
whose second symbol is b--exactly one such q exists in any standard Q. 

At the completion of the third step one has from Eqs. (16) and (20) 

exp[-�89 exp[-�89 exp[-�89 ~nt(0) 

= (-i)2Ugr M | UH~v(r c | Poo"F ~) 

| Cg= | U~z~ RM | Uc~F "o | U ~ W  R, (48) 

where exp(-�89 el= = e l ,  has been used. 
The cycle now begins over again, operating with exp[-�89 This 

factor and each succeeding factor correspond to the completion of exactly 
one model gtep. Operating on the initial state with 3j such factors corresponds 
to carrying o u t j  computation steps of the original machine. 

For  any given time t one continues as above, evaluating successively 
from right to left, the effect of the exponential factors until one comes to the 
last one, exp[-iF(x~(t))Hr If t is such that there exist values of x~(t) 
such that 0 < F(x~(t)) < ~r/2 and ~o(x~(t) + n ( t ) d -  t) r 0 and n( t )mod 3 = 
1 or = 2, then by Eqs. (23) and (26), one ends up with a sum over two terms 
since both cos(F(x,(t))) and sin(F(x~(o) ) are different from zero. This is the 
case if t is such that the n(t)th step is only partly done. This case for 0 = 
n(t) rood 3 also gives a linear combination of terms. However, if t is such that 
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for all xn(t) for which q~(xn(t) + n( t )d  - t) ./: O, F(xn(t)) = rr/2, then the n(t)th 
factor represents a completed step just as is the case for the other factors. 

From this analysis one can see that the parameters can be arranged such 
that for finite time intervals of width A centered about tl, t2 ..... tj ..... t3u, where 
tj = ( j  + �89 the interacting state lt2~nt(t) is stationary for all times in A. 
That is, for all times t such that n( t )d  + w + r < t < [n(t) + l i d -  w - r 
[which are those times t such that for all xn~t~ for which 9(xn(~> + n( t )d  - t) --/: O, 
F(xn(t)) = ~r/2 and for all xn(t)+l for which 5o(x,(t>+l + [n(t) + 1]d - t) -r 0, 
F(xn(t)+l) = 0], ~n t ( t )  is stationary and represents n(t)  completed steps. 
Thus A = d - 2w - 2r can be made as large as desired by making d suffi- 
ciently large, with fixed w and r. 

From the analysis just presented one sees that if the initial state is as 
given by Eqs. (39) and (40), then at those times for which W~t(t) [Eq. (45)] 
is stationary, tte~nt(t) corresponds exactly to the completion of n(t)  model 
steps. It is not a linear combination over states representing different partially 
completed or completed steps or over states representing the reading or 
recording heads in different positions. If t is such that tF~nt(t) is not stationary, 
then tF�89 is a sum over two or more terms which together represent the 
partially completed n(t)th step. 

Only if tF~nt(0) is itself a linear combination of states representing differ- 
ent initial machine internal states, different input tape expressions, and 
different head positions will tF~nt(t) be a linear combination of states. How- 
ever, even in this case the time evolution of tF~t(t) preserves the initial linear 
combination and does not further combine the terms. Speaking diagram- 
matically, the time evolution of T~nt(t) can be represented as a tree in which 
each path contains no branches, only bubbles, and the only branching is 
provided initially at the root by the initial state. Of course this all changes if the 
condition d > 2w + 2r is relaxed. 

It remains to investigate the halting of the computation process. Suppose 
t is such that T~nt(t) is stationary and n(t)  = 1 mod 3. That is, the recording 
of the tape symbol v, scanned by He, the position of Arc, and the machine 
internal state I has been completed. If there is no quadruple q in Q beginning 
with a~(v,-)-, then the completed action of the next step, given by exp( -  �89 ~) 
acting on ~ t ( t ) ,  is given by the 1 - PQ term of Eq. (24). That is, if t '  is such 
that t '  > t, n( t ' )  = n(t)  + 1, and ~F~t(t) is stationary, then 

' v ~ ( t ' )  = (1 - P O % n ~ ( t )  

Thus no computation step is carried out. From here on ~F~t(t) evolves 
by shifting HR, copying, and doing nothing, in sequence, until t > 3N d  + w + r. 
At this time ~F~nt(t) becomes permanently stationary. Thus in this case, since 
no calculating is occurring, the last part of the record consists of repeated 
copying of the final machine internal state, scanned symbol, and Arc position. 
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For a standard Turing machine Q with the initial state W~t(0) in the 
standard form, this halting condition will arise if the final machine state az 
appears before 3N model steps have occurred. In this case the Turing machine 
calculating is completed in less than N steps. Such a situation can also arise if 
W~t(0) is not in the standard form, e.g., if one starts out with the machine in 
an internal state different from a~. 

6. D I S C U S S I O N  

There are several aspects of the models constructed here which should 
be noted. First, one notes that, contrary to what might have been expected, 
it is possible to construct a quantum mechanical model of a decision pro- 
cedure. The construction is valid in the sense that record, act, and shift steps 
are all described by interaction Hamiltonians. In particular the necessary 
correlation required by "read the record, if ~ is read, carry out operation 
O, on the system" is already built into the Hamiltonian. The whole process 
can be described by a pure state evolving under the action of such a Hamil- 
tonian. Of course the possibility of such a construction is conditioned on the 
approximations used in the models developed here. 

In order to compare the models constructed here with those of 
Landauer (13~ and with real computers so far built, it is helpful to evaluate the 
contributions of various terms to the total energy. By use of Eqs. (28)-(30) 
and (40)-(43) one can show that the total energy (W(t), HW( t ) )  (the Q and N 
indices are suppressed) consists of the sum of two terms each given by 

(W(t), HoW(t))  = 3N _ co ~o*(x) -~ ~xx (~o(x)) dx - (~pW int, VH(n(t))q~W~nt)n(~) 

(49) 

(W(t), H'W( t ) )  = (~oW ~t, VH(n(t))gWint).(t) 
and 

Here 

and 

(50) 

(~W jnt, V H  (n( t ) )~oWint)~(t ) 

= q)*(x~(t) + n ( t ) d -  t)V(x~(t))q)(xn(t) + n( t)d - t)dx~(t~ 
co 

x [Win t (n( t ) -  l ) H ( n ( t ) ) W ~ t ( n ( t ) -  1)] (51) 

Wint(n(t) -- 1) = e-~ZH(n(t)- 1)/2 ... e-~=H1/2Wint(0) (52) 

It is clear from the above that the total energy equals that carried by the 
control systems, 3N times the kinetic energy of a single control system. Also, 
it turns out that, for standard machine initial states of the form given by Eq. 
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(40), the interaction energy (~(t) ,  H ' ~ ( t ) )  = 0 for all times t for which either 
no control system is interacting with M { n ( t ) d  + w + r ~< t < [n(t) + 1]d - 
w -  r i f n ( t )  < 3N, o r 3 N d +  w + r  < t i f n ( t )  = 3N} or if t is such that 
n(t )  rood 3 = 1 or 2. This latter condition arises from the fact that if the 
structure of the interaction Hamiltonians, Eqs. (14) and (15), for the record 
and compute types of steps is such that, if ~Fint(0) has the form given by Eq. 
(40), then (W'int(n(t) - l), H(n(t))~Fint(n(t)  - 1)) = 0 if H ( n ( t ) )  = H~ or / /2 .  
Only for the third type of step, which is the shift of the recording head and 
which occurs only when n(t)  mod 3 = 0 and (% V~o)n(t ~ r O, does one have, 
by Eqs. (16), (20), (30), and (40), 

(~nt(n(t)  - 1), H(n(t ) )~F(n( t )  - 1)) = ( ~ . ,  B~b~) 

where l = largest integer contained in [n(t) + 2]/3. 
It follows from these results that at all times after the completion of a 

model step and before the beginning of the next, or after 3N steps, the energy 
of the control systems is the same as it is at the beginning, and the interaction 
energy is zero. There is no net transfer of energy to the Turing machine part 
(M + He + T + H~ + R) as the calculation progresses. 

In this respect the models discussed here are different from those dis- 
cussed by Landauer ~13~ in that in his models the computation process dissi- 
pates energy at each step. Furthermore, the energy dissipation can be 
arbitrarily small if the computation process is sufficiently slow. No such 
limitation exists for the models constructed here. They proceed at a finite 
speed and dissipate zero energy. 

The models constructed here are also quite different from those discussed 
by Landauer (13) and from real computers so far constructed in that they are 
models of what might be called a "coheren t"  computer or computation 
process. That is, the whole computation process is described by a pure state 
evolving under the action of a given Hamiltonian. Thus all the component  
parts of the Turing machine are described by states which have a definite 
phase relation to one another as the calculation progresses [Eqs. (23) and 
(26)1. 

The existence of such models at least suggests that the possibility of 
actually constructing such coherent machines should be examined. Such 
machines would have the advantage that there is no energy dissipation and 
resultant heat buildup, which are problems in the large computers. On the 
other hand, the model Hamiltonians constructed here are very complex. As a 
result it is difficult to conceive how one would actually build such a machine. 

The models constructed here do in fact require some energy dissipation. 
However, this occurs only at the times the operator examines the machine to 
see if the computation is finished and if so, to restore the Turing machine to 
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the initial state. However, when and where and how much energy is so dissi- 
pated is under external control. It is not part of the computation process itself. 
This will be discussed more in another paper. 

In this connection it should be noted that for the models constructed here 
both the system carrying the information and the machine that reads and acts 
on the system are considered as interacting quantum systems. The entire 
complexity of the computation process resides in the complexity of the inter- 
action. The system evolves in isolation from the external world. Reading the 
overall state of the model system, which includes reading the computation 
tape, is an interaction with the external world. It does not perturb the wave 
function provided it is done in the intervals A centered on the times tl ..... t3~. 
Thus there is no "reduction of the wave packet"  for reading done in these 
time intervals. 

In conclusion it must be stressed again that the existence of such models 
was shown here by the use of the Coleman model approximation. (~,la~ This 
model has the consequence that the model Hamiltonian evolution is clean, 
with no interference between component states rePresenting different compu- 
tation steps. The reason is that the control system wave packets do not spread 
as they move past M. As a result there is no interference between the different 
model step states as the system evolves. 

Use of the correct V2/2m would give wave packet spreading and a result- 
ant interference between different model steps because the machine M would 
interact with several control systems at once. However, by suitable choice of 
external parameters, the control system wave packet spreading can be kept 
quite small. It may be, though, that this will result in a slowing down of the 
model computation process by spacing the successive control systems farther 
and farther apart to keep the interference effects quite small. 

It has been shown here that, if the Coleman model is used, for each N and 
Turing machine Q, one can construct a quantum mechanical Hamiltonian 
model for ~< N computation steps which creates and saves a history tape. It 
leaves open the question of whether it is possible to construct a Hamiltonian 
model which erases its own history tape and whether models can be con- 
structed for the limit N = oo. It is hoped to investigate both these problems in 
a future paper. 

A P P E N D I X  

The problem is to obtain the solution to the Schr6dinger equation as 
given by Eqs. (41) and (42) if Ho is given by Eqs. (28)-(31), or 

He = No + H' (A1) 
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where (the Q indices are suppressed) by the Coleman model assumption 

a~  1 ~ (A2) Ho = j=~'l= ~ ~xj 

and 

with 

3N 

H ' =  ~ V ( x j ) H ' ( j )  (A3) 
[j = 1 

//1 1 = j rood 3 

H ' ( j )  = //2 if 2 = j mod 3 (A4) 

Ha 0 = j rood 3 

and //1, //2, and Ha are given by Eqs. (14)-(16). Also, V(xj)  is such that 

f~  ~ V(x)  dx = 7r/2, and V(x)  = 0 if Ix I > r. The initial state We(0) is given 

by Eq. (39) as 
qPQ(0) = q~e(0, x ..... XaN)~nt(0) (A5) 

with 
3Ig 

~Fe(O, x,. . . ,  X3N) = @ ~(Xj + jd )  (A6) 
j = l  

where ~0(z) = 0 if ]z I > w, and the packet separation distance d satisfies 
d > 2r + 2w. 

One has from the Schr6dinger equation (2~ i d~F(t)/dt = (Ho + H')~F(t) 

f2 e -~m = e-~Zo t - i e-mo(t-~)H'e -~m dr (A7) 

Successive iterations give the expansion (2~ 

2 fo e-~m = e-mot  + ( - i )  '~ d-r 1 e-~Ho(t-~l)H ' ... 

f~ 
n -  1 

X e - ~ H o ( ~ n  - I n -  1)H'e- mdn drn 

This expansion converges uniformly if H '  is bounded, (2~ which is clearly the 
case here [N is finite and H ( j ) ,  which is independent of xj, consists of finite 
sums of products of spin operators and shift operators]. 

Use of the fact that 

e-~ 'o~H ' = H' (a)  e-too ~ (AS) 

where 
3N 

H'(a)  = ~ V ( x j -  a ) H ' ( j )  (A9) 
i = 1  
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gives 

where 

v ( t )  = ( - i )  ~ 

e -m~ = V ( t )  e -~ro  t (AIO) 

dr1 �9 .. j f n  - i 

and the n = 0 term is equal to 1. 
This gives 

dr~ H ' ( t  - r ~ ) H ' ( t  - "c2) ... H ' ( t  - "r~) 

(AI  1) 

W e ( t ,  x l , . . . ,  X3N) = V(t)e-~H~ x l  ..... xaN)~F~(0) 

3 N  

= | , ( x j  + j d -  t )V( t )%" ' (O)  
j = l  

(A12) 

Consider, using Eqs. (A9) and (Al l ) ,  a general term in (AI2).  It  will have 
the form 

@ q~(xj + j d -  t dr~ ... d-r,~ 
j = l  

• fV (x j~  - t + r ~ ) H ' ( j z ) . . .  V (xy ,  - t + r~)H'( j~)]~g~t(O)  

F r o m  the restrictions on % d, and Vgiven, along with ~'J+l ~< r j , j  = 1, 2 ..... n, 
one can show that  this term is zero for all xj~ ..... xj, unless j l  /> j= /> ... >~j~. 
To see this, consider any pair of  indices Jk andj~ with k < 1. Associated with 
these indices is the factor  

q~(x~ + j ~ d -  t ) V ( x j ~  - t + ~'k)q~(x h + j f l -  t ) V ( x  h - t + -r~) 

This factor  is nonzero if 

- w  <~ xj~ + j ~ d -  t <~ w,  - r  <~ xj~ - t + r~ <~ r 

- w  <~ xj~ + j ~ d -  t <<. w,  - r  <~ x h -  t +  rz <~ r 

F r o m  the first pair of  double inequalities one can eliminate xj~ - t to obtain 
- r  + ,r~ <~ w + jkd .  F r o m  the second pair one can eliminate xj, - t to  
obtain - w + j f l  <~ r + rz. These two can be added and rearranged to give 

j l d - j k d  <~ ~ -~-  r~ + 2 w  + 2r  <~ 2 w  + 2r  

since ~- I> ~-z. But this implies j~ - j~ ~< 0 or j~ ~< j~ as d > 2w + 2r. 
As a result, the only nonzero contributions to ~Fo(r, x l , . . . ,  x3N) come 
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f rom those terms for which the control  system labels do not decrease as one 
moves to the left in the general term. Thus one has 

TQ(t, x~ ..... xaN) = @ ~(x j  + j d  - t) ( -  i) ~ d% ... dr= 
Y=l n = 0  

3N J1 Yn - 1 

]i=i ]2=1  ]==i 

(A13) 
where 

Yj,(rzxg,) = V(xj~ - t + r , )H ' ( j , )  (AI4) 

Note  that  the different Y factors do not  commute  in general. 
Consider next the factors in (A13) containing j l ,  q~(x h + j~d  - t)  V ( x  h - 

t + rl). Proceeding as before and eliminating x h - t  f rom the double 
inequalities, one finds that  this term is nonzero for some xjl iff rz - w - r ~< 
j , d  <<. r~ + w + r. N o w  0 <~ rl ~< t. Thus this factor  is nonzero i f  j l d  <~ t + 

w + r. Define n(t )  by n( t )  = smaller of  3N or the maximum value o f j  such 
that  j d  <~ t + w + r. One can replace the upper  limit of  the j l  sum by n( t )  

to get 

V(t)~bnt(O) = ( -  i) n dr1 "" d% Y , l ( r l x h )  ... 
n=O 'dO ]I=i 

in- I 

x ~ Y, . (r ,x ,~) 'F"t (O)  (A15) 
jn=l 

Consider a general term Y h ( r l X h )  .." Y j , ( r~x j , )  of  Eq. (A15). Let  1~ be 
the number  of  Yfactors  whose j indices  are 1 ;...; lm be the number  o f  Yfactors  
whose j indices are m ;...; and l, m be the number  of  Y factors whose j indices 
are n(t) .  [From the structure of  the j sums there are at most  n(t )  distinct j 
values.] For  a particular term lm = 0 if Y,, does not  appear in it. Since the 
A,..-, J ,  sequence is nonincreasing f rom left to right, all lm of  the Ym factors 
stand to the right of  the number  lm+ 1 of  the Y~ + 1 factors. One can then 
replace the n sum and all the j sums by sums over 11,..., 1,(o. After making 

corresponding changes in the indices of  the r variables, one obtains 

f fo  v ( O ' G o ~ ( o )  = ( -  0<~,  & l  ... d-n.,,, 
I n ( t )  = O 

x ( - i )  hm-  ''"m dr~.m+l "" dr~ 
I n ( t )  - 1 = 0 "J 0 

• [ Yn.)- d~, . . ,  § ~x.<~>_ 0"" Y..)-  ~(~x.~,>_ 1)] 

x --. ( _  i)z, dre + 1"'" drB + ~ 
ll=O dO oO 

x [ Yl(~e + ~x3 "" ~~ Yz(rz +,~x,)ITQ (0) (A16) 
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where ~ = ln(t) + In(t)-1 and-~ = In(t) + l=(~)_ 1 + "'" + 12 are used as tempor-  
ary notation. 

In writing Eq. (AI6)  the following convention has been used for each 
j = 0,1 ..... n(t). For  the lj = 0 term in the lj sum the entire square bracket 
containing the Yj factors and the integrals is to be replaced by 1. After this 
convention is applied, any r 0 appearing as an upper limit is to be replaced 
by t. 

Next, consider the/1 sum. One can, by following the methods developed 
by Dyson,  (21) replace the upper  limits of  all the integrals by r e provided a 
normalizing factor  of(/11)- ~ is included. No  time ordering operator  is needed, 
since all the Y~ factors commute.  One has as a result 

~0 ( - i ) z l  d~',+l "'" d~'B +z, [Yx(~-a+l xl)"'" Yl(ra+, 1 xl)] 
I = 

[ d~['xz-t+z~ 1 -- exp - i H ~  | V(z) dz (A17) 
Xl -t 

where Y10-x~) = V(x~ - t + ~')Hx has been used along with a variable 
c h a n g e z  = x~ - t + r. 

The l~ sum in Eq. (A16) is multiplied on the left by Y2(rBx2). Bringing in 
the two relevant wave packets, one sees that  Eq. (116) contains the factor  

~(xa + d -  t)9(x2 + 2 d -  t)V(x2 - t + rB)exp - i H ~  V(z) dz 
X 1 -- t 

c o m m o n  to all terms in the l~,),..., 12 sums. This factor  is different f rom zero 
iff - w  ~< xl + d -  t ~< w, - w  ~< x2+  2 d -  t ~< w, and - r  ~< x 2 -  t + 
r e < r. Elimination of  x2 - t f rom the last two double inequalities gives 
- r -  w + 2d~< ~-~ < r + w + 2d. Use o f  this with the first double in- 
equality gives - x ~  - t + ~-e ~> d -  2w - 2r > r as d > 2w + 2r. Similarly 
x ~ - ~ - < ~ w - d < r .  

As a result, the upper and lower limits of  the integral in the exponent  can 
be replaced by r and - r .  This gives 

e x p [ - i H z f ~ - t  t+*~ V(z) dz] = exp(-�89 (118) 

which then replaces the ll sum in Eq. (A16). 
Since exp(- �89 is independent of  r e, one can repeat the above 

argument  on the 12 sum and obtain 

2~= o(-- i)t2 d%+1 ... d'ry + t 2 
1 = . J 0  

x [ Y2('r, + lx2)"" Y2(~-, + ,2x2)]e-"m~/2 
= e-"~H~/2e-~'m~/2 (A19) 



590 Paul Benioff 

where ~, = ln(t) + ... + la. Proceeding in this fashion, one can proceed left- 
ward through Eq. (A16) replacing the lj sum factor by exp[-} i r rH' ( j ) ] ,  where 
H ' ( j )  is given in Eq. (A4), until one comes to the ln(t) sum. For this case the 
above argument gives the factor 

e x p [ - i H ' ( n ( t ) ) f j i l ; ' _ t V ( z ) d z  ] 

which is multiplied by ~(x~(t~ + n(t)d - t) in the full expression. Again one 
can replace the lower limit by - r  (or -oo)  to get 

e x p [ -  iH'(n(t))F(x,(t))] 
xn(t) 

where F(xn(t) is given by f - ~ V(r) dr as a replacement for the l~(t) sum factors. 

Putting these results together, one finally obtains 

3N 

~Q(t, xl,..., xaN) = @ cp(xj + jd  - t) e x p [ -  iH'(n(t))f(xn(t))] 
] = 1  

x e x p [ -  �89 - 1)] ... e x p [ -  {i~Hll~F{~t(0) 
(120) 

which is the desired equation (41) of the text. 
From the requirement that 

q~(x,(t) + n ( t ) d -  t )exp[- iH'(n( t ) )F(x , ( t ) )]  

be different from zero, one obtains 

w -  n(t )d + t >1 x~(~) >1 - w -  n(t )d + t 

If t is such that t >>- r + w + n(t)d, then F(x,(t~) = ~/2 for all x~(t~ for which 
cr + n(t)d - t) r 0. Since this holds in particular for all t t> r + w + 
3Nd, one has Eq. (42). 

It is to be emphasized that the derivation of Eq. (A20) depends essentially 
on the restrictions that the wave packets and potential have compact support 
and d > 2w + 2r. If  any of these restrictions is relaxed, T~(t, xl ..... xaN) can 
no longer be written as a simple product of exponentials acting on T~t(0). 
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