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An Approach to Cryptography 
Based on Continuous-Variable 
Quantum Neural Network
Jinjing Shi1,4*, Shuhui Chen1,4, Yuhu Lu1, Yanyan Feng1*, Ronghua Shi1, Yuguang Yang2 & 
Jian Li3

An efficient cryptography scheme is proposed based on continuous-variable quantum neural network 
(CV-QNN), in which a specified CV-QNN model is introduced for designing the quantum cryptography 
algorithm. It indicates an approach to design a quantum neural cryptosystem which contains the 
processes of key generation, encryption and decryption. Security analysis demonstrates that our 
scheme is security. Several simulation experiments are performed on the Strawberry Fields platform 
for processing the classical data “Quantum Cryptography” with CV-QNN to describe the feasibility 
of our method. Three sets of representative experiments are presented and the second experimental 
results confirm that our scheme can correctly and effectively encrypt and decrypt data with the optimal 
learning rate 8e − 2 regardless of classical or quantum data, and better performance can be achieved 
with the method of learning rate adaption (where increase factor R1 = 2, decrease factor R2 = 0.8). 
Indeed, the scheme with learning rate adaption can shorten the encryption and decryption time 
according to the simulation results presented in Figure 12. It can be considered as a valid quantum 
cryptography scheme and has a potential application on quantum devices.

Cryptography is one of the most crucial aspects for cybersecurity and it is becoming increasingly indispensable in 
information age. In classical cryptosystems, cryptography algorithms are mostly based on classical hard-to-solve 
problems in number theory. However, the development of quantum computer and quantum algorithms1,2, such 
as Shor’s algorithm3, poses an essential threat on the security of cryptosystems based on number theory difficul-
ties (like RSA cryptosystem). Thus the novel post-quantum cryptography4 (including quantum cryptography5–7) 
which is secure against both quantum and classical computers is urgently required. Moreover, the typical scheme 
of quantum cryptography is implemented by combining quantum key distribution with classical “one-time pad” 
model8,9 currently, which can effectively solve the key distribution problem10. While there are the problems of 
high key rate requirements, large key demands and consumptions in practical applications in the “one-time pad” 
quantum communication system. Therefore, we approach to investigate new quantum cryptography algorithms 
and protocols that can be implemented based on a more practical model.

several researchers have already combined neural network with classical cryptography for the multivariate 
structural and nondirectional features of neural network. In 1990, Lauria11 firstly introduced the concept of cryp-
tography based on artificial neural network (ANN). Then branches of applications and related works of cryptog-
raphy with different ANN models were proposed subsequently. Network stochastic synchronization with partial 
information12 and asymptotic, finite-time synchronization for networks with time-varying delays13 provide pos-
sibilities for mutual learning between neural networks. Synchronization and learning mechanism based on neural 
network14 prove that neural network can be trained to perform encryption and decryption operations, which is 
similar to the black box computing model in quantum computation15. In addition, Sayantica16 demonstrated 
hackers who have computational power polynomial in time cannot be able to invade in the neural network cryp-
tosystem. Thus it provides an opportunity for the combination of quantum computing and neural cryptography17.

Quantum neural network18 was firstly proposed by Kak and it provided a potential solution to design novel 
encryption and decryption mechanism with computational efficiency, quantum natural properties, unidirection-
ality and multivariate structure of ANN. The advantages of quantum neural network in fast learning, improving 
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efficiency of information processing and ensuring itself effectiveness have been highlighted19–21. In recent years, 
discrete-variable quantum neural network (DV-QNN) have been researched and serval practical applications 
have also been developed22–25. General achievable classification scheme based on quantum neural network26 and 
quantum neural network optimization based on variational algorithm27 promote the practical progress of quan-
tum neural network. Cryptography system based on DV-QNN28 was firstly introduced in 2016, which applied 
quantum neural network into encryption and decryption area. While a cryptosystem Anh et al.28 proposed is 
required to prepare the discrete quantum source and design the gradient descent algorithm corresponding to 
classical training algorithm, which increased the difficulty of practical implementation of the cryptosystem.

Thus continuous-variable quantum neural network (CV-QNN) model is utilized in this paper to design a 
more practical quantum cryptography scheme, which can be considered as an approach to quantum neural cryp-
tography (QNC). Gaussian states which are experimental easier-to-achieve resources29,30 compared with single 
photon are utilized instead of discrete-variable quantum states. A specific quantum neural cryptography model 
is devised based on the general CV-QNN with additional preprocessing and postprocessing. In the preprocess-
ing, legitimate measurement bases (LMB) are introduced to resist information eavesdropping, and the involved 
quantum nonlinear mapping method allows classical bits to be encoded into quantum states, which increases the 
types of input information. Mature optimization algorithm Adam31 is utilized in the process of training QNC for 
adjusting weights correctly and efficiently, and the message authentication against message replay is introduced. 
The experimental results simulated on Strawberry Fields32 demonstrate that the scheme can correctly encrypt and 
decrypt data and the method of learning rate adaption in our paper can accelerate the cryptography algorithm 
and strengthen the security of the cryptosystem.

Methods
Continuous-variable quantum neural network model.  According to the structural characteristics of 
discrete and continuous spectrum of the quantum eigenstates, quantum states can be divided into two categories: 
discrete variables and continuous variables, and discrete variable quantum information theory has been widely 
researched. It inspirits the continuous-variable quantum fields including the extension of quantum information 
communication from finite to infinite dimensions. In continuous-variable fields, information represented by 
qumodes is carried in the quantum states of bosonic modes, and continuous quadrature amplitudes of the quan-
tized electromagnetic field can be applied to implement quantum state preparation, unitary manipulation and 
quantum measurement33,34. Unlike discrete variable quantum models that perform unitary operations, such as 
Pauli matrixes, continuous-variable quantum models often utilize Gaussian and non-Gaussian operators33 to 
transform quantum states. For a qumode x̂ which can be described with two real-valued variables ∈x p( , ) 2, the 
transformations on phase space with Gaussian operation gates34 can be summarized as follows:
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where the simplest single mode Gaussian gates φR( ), αD( ), S r( ) are rotation gate, displacement gate and squeezing 
gate respectively, and the (phaseless) beamsplitter θBS( ) indicates the basic two mode Gaussian gate. The ranges 
for the parameter values are φ, θ π∈ [0, 2 ), C Rα ∈ ≅ 2, and r ≥ 0.

A general CV-QNN model34 is presented in Fig. 1. The width of the later layers can be decreased (increased) 
by tracing out qumodes (increasing ancillary qumodes) and the output of the last layer can be measured to obtain 
valued information. By the way, classical neural network can be embedded into the general CV-QNN model by 
fixing gate parameters so that the formalism may not create any superposition or entanglement. In other words, 
the CV-QNN can deal with classical data, i.e., the input | 〉c  can be created by applying the displacement operator 
D(c) where c is classical data to the vacuum state:

↔ | 〉 = ⊗ ⊗ ⋅ ⋅ ⋅ .c c c c c: (5)n1 2

In addition, different QNN models, such as recurrent quantum neural network, can be reasonably constructed 
with the changeable structure in Fig. 1, and a neuron of quantum neural network needs to be specified as well to 
achieve different functions.

Training algorithms for quantum neural network.  An initial neural network is required to be trained 
so that it can handle practical problems, such as correctly encrypt and decrypt data or classify images, etc. The 
methods for training QNN roughly fall into two main categories:
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•	 Optimize neural network parameters with existing quantum algorithms. Such as, utilize the quantum search 
algorithm to find optimal weights for network35.

•	 Generate quantum training algorithms corresponding to the classical training algorithms to find the optimal 
value of target function.

Gradient descent belonging to the second category can be applied to quantum computation, which is universal 
that great quantities of modules on the programming software platform have the ability to automatically compute 
the optimum gradient. In this scheme, we perform experiments on Strawberry Fields32 and adopt Adam algo-
rithm to optimize CV-QNN. Adam algorithm is a stochastic gradient descent algorithm, which is suitable for 
optimizing quantum neural cryptosystem due to its non-deterministic but optimized output. Specifically, opti-
mizing quantum neural network can be implemented by adjusting parameters of transformation matrices. Take 
the rotation operator R( )⁎φ  as an example, then the following transformation can be derived after training QNN 
according to Eq. (1).
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where φ φ φ= + ∆⁎ , and φ∆  can be determined when the desired target results are achievable. Other transfor-
mation matrices in Eqs. (2–4) may have similar evolutions as well.

Cryptography algorithm based on continuous-variable quantum neural network.  Specific 
model design for cryptography algorithm and the processes of secret-key generation, encryption and decryption 
with CV-QNN model are provided in this section.

Design of CV-QNN for cryptography algorithm.  Mathematical isomorphism between the input and output of a 
neuron verifies that CV-QNN can be utilized to encrypt and decrypt data. According to general function expres-
sion of classical neural network Y = f(W * X + b), where W, X and b are weight matrix, input vector and bias vec-
tor respectively, and Y is the output vector of classical neural network. Similarly, we can get theoretical expression 
between neurons of CV-QNN34, i.e.,
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∞x̂ x x x dxj j j j j( ) . By the way, x̂ j( ) represents the jth input of the neuron or the jth output of a neuron 
in the last layer, ŷ k( ) represents the kth output of the neuron or the kth input of a neuron in the next layer. αk rep-
resents the parameters of displacement αD( )k( )  and ϕ(·) is nonlinear function. Similarly, mathematical isomor-
phism between layers of CV-QNN can be summarized as follows:
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network can be easily recovered by taking inverse of unitary matrix, i.e.,
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Figure 1.  A general continuous-variable quantum neural network model. ι( ) for ι ∈ ... n{1, 2, , } represents a 
single layer of quantum neural network. The width of layers can be decreased by tracing out some qumodes or 
can be increased by increasing some auxiliary qumodes. The output of the last layer can be measured to obtain 
valued information.
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In order to design the cryptography model effectively and practically to conforms to Eq. (8), Gaussian and 
non-Gaussian operators are fixed to construct a neuron of quantum neural network. Fig. 2(a) introduces the 
schematic of general neurons of CV-QNN34 corresponding to neurons of the layer ι( ), and the schematic of spe-
cific neurons for cryptography model is presented in Fig. 2(b) where rotation operators R1 and R1 take the place of 
U1 and U2 in Fig. 2(a) respectively. Hence, a neuron can be defined as follows:

ϕ= .ι D R S R: (10)neuron( ) 2 1� � � � �

where nonlinear function ϕ can be implemented by non-Gaussian operator Kerr κ κ= ˆK exp i n( ) ( )2  with 
Hamiltonian = =ˆ ˆ ˆ†H aa n2, ∈t  (â and ˆ†a  are the annihilation and creation operators respectively). It is obvious 
that | 〉 =  W R S R:k j, 2 1 for = … = …k m j n1, 2 , 1, 2 , and α| + 〉 =   

ˆW x D R S R:k j j k, ( ) 2 1, the phase of 
Gaussian operations D, R2, S, R1 are just contained in Wk j,  and αk. While during the process of training CV-QNN, 
only the weight Wk j,  can be changeable. Hence weight can be regarded as secret key for a quantum neural 
cryptosystem.

Above discussions demonstrate that quantum neural network can be properly applied as cryptogrsystem with 
secret key W . Thus, a cryptography model can be designed by multi-layer CV-QNN which is presented in Fig. 3 
where the inputs x̂ k( ) are transformed by plaintext M according to Eq. (5). The process of x̂ k( ) being computed by 
CV-QNN can be simply described as x( )k( )ˆϕ . Besides, the CV-QNN has two kinds of outputs. One is ĥ k( ) which are 

Figure 2.  (a) The schematic of a general neuron of CV-QNN. (b) The schematic of a specific neuron ιneuron( ) 
which includes the first local rotations R ( )k1 φ , local squeeze gates S(rk), the second local rotations R ( )k2 φ , local 
displacements αD( )k , and local non-Gaussian gates ϕ λ( )k  for = …k m1, 2 . The first four components 
implement an affine transformation, followed by a final nonlinear transformation.

Figure 3.  Multilayer CV-QNN for the cryptosystem. The preprocessing is in the left part where M is classical 
data. The process of encrypting data is in the right part. x̂ k( ) are inputs for the neural network, ŷ k( ) are direct 
outputs of the last layer, ĥ k( ) represent the outputs of hidden layer. The width of hidden layers can be changeable 
by tracing some qumodes out or increasing some auxiliary qumodes.
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the outputs of hidden layer, the other is ŷ k( ) which are direct outputs of the last layer. By the way, ĥ k( ) can be used to 
verify the integrity of data, and ŷ k( ) can be utilized to construct cipher block (mentioned in the next section in detail).

Key generation.  It is well known that the weight may be random before training CV-QNN, thus the quantum 
neural network is required to be trained with lots of training sets and training algorithm for processing data cor-
rectly. During the process of training, the weights W in Eq. (8) are updated, i.e., secret keys are generated. In addi-
tion, the network architectures, the chosen optimization algorithms and the training sets which are unrevealed, 
can determine the distributions of weights of hidden layers36. In other words, the network architectures et al also 
can be regarded as the keys for quantum neural cryptosystem. Hence, multiple keys are contained in the cryp-
tosystem, so that adversaries are difficult to obtain all configurations above to acquire the secret keys. Moreover, 
the dimensions of input and output and the hierarchy of hidden layers decide the length and complexity of keys. 
Thus, valid users can change the length of keys accordingly to satisfy the security of communications37.

Encryption.  If the plaintext M are classical data, then the data are required to be preprocessed into qumodes 
according to | 〉 ↔ ˆD M x( ) 0  which are mapped to = ...ˆ ˆ ˆ ˆx x x x: { , , , }m(1) (2) ( )  in accordance with the dimension m of 
the input vector. Therefore the total number of encryptions can be defined as ⌈ ⌉L M

m
( ) , where L M( ) is the length of 

M. The whole process of encryption can be simply presented as Eq. (11).
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Dimension m can be changed as m′ vary in each layer by tracing some qumodes out34 or increasing ancillary 
qumodes, and n represents the size of hidden layers. Inputs = ...x̂ k k m( ){ 1,2, , } are processed by the first few neural 
layers, the last layer 

 n( ) produces a certain amount of outputs denoted by ŷ k( ). Let the output state of the circuit be 
ψ| 〉x( )  for the given input | 〉D M( ) 0 , so the expectation value of the quadrature operator ŷ, or namely the outputs 
of the neural network, is 〈 〉ŷ , i.e.,

ψ ψ ψ ψ〈 〉 = = 〈 | | 〉.ˆ ˆ ˆy x y x x y x( ( ), ( )) ( ) ( ) (12)

Hence the error function or cost function can be indicated as Eq. (13).

ψ ψ= − 〈 | | 〉.ˆ ˆ ˆ ˆE x x y x( ) ( ) (13)k k k k k( ) ( ) ( ) ( ) ( )

The process of encryption is shown in Fig. 4, where the qumodes x̂ k( ) can be input into CV-QNN in batches or 
once. ŷ k( ) are the final outputs of the neural network which are computed to get E k( ). ĥ k( ) from the outputs of hid-
den layer of CV-QNN can be served as the message authentication code (MAC)37–39, and then cipher block 

ˆC h E( , )k k( ) ( )  can be constructed. Apparently, the cryptosystem both implements information encryption and the 
features of MAC.

Decryption.  The process of decryption is shown in Fig. 5 where the cipher block ˆC h E( , )k k( ) ( )  is parsed into ĥ k( ) 
and E k( ). Input ĥ k( ) into the CV-QNN for decryption and then output ŷ k( ). Hence the plaintext x̂ k( ) can be obtained 
according to Eq. (13). Let the obtained x̂ k( ) be input into the CV-QNN again, then ′ĥ k( ) can be computed out. 
Comparing ′ĥ k( ) with ĥ k( ), we can verify whether the data x̂ k( ) are integrity. In detail, 〈 ′ | 〉ˆ ˆh hk k( ) ( )  can be derived by 
means of the swap test40. if ε〈 ′ | 〉 ≥ −ˆ ˆh h 1k k( ) ( )  where ε is the limitation of fault tolerance, Bob then can accept the 
integrated x̂ k( ).

The whole communication stages between Alice and Bob are illustrated in Fig. 6. Alice and Bob communicate 
with each other in an identical neural network. The first stage is that Alice and Bob synchronize measurement 
basis (MB) together (synchronized MB are denoted as LMB). The process of synchronization can be described as 
following steps: (i) Alice sends quantum states generated by random sets of MB A( ) to Bob. (ii) Bob measures the 
quantum states with random sets of MB B( ) and sends serial numbers of MB B( ) to Alice. (iii) Alice tells Bob that 
which serial numbers of MB B( ) should be reserved so that they can keep the same MB, i.e., =MB MBA B( ) ( ). 
Specifically, Alice transforms m quantum states {Q1, Q2, …, Qm} into ⋅ ⋅ ⋅q q q{ , , , }m1 2  with m sets of MB denoted 

Figure 4.  The process of encryption. The CV-QNN can be considered as a black box to generate ĥ k( ) and ŷ k( ) 
which are target sets. The expected value of ŷ k( ) combines with x̂ k( ) to form error function E k( ). Then the cipher 
block ˆC h E( , )k k( ) ( )  is constructed to be sent to the receiver.

https://doi.org/10.1038/s41598-020-58928-1
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by MB A( ) which are randomly selected from MB MB{ , }1 2  (an example can be seen in Fig. 7). Then Alice sends 
these quantum states qk for = ..k m{1, 2 , } to Bob. Bob measures them with m sets of MB denoted by MB B( ) 
which are randomly selected from MB MB{ , }1 2  as well. Then he sends m serial numbers of MB B( ) to Alice (the 
serial number of MBi is denoted by i for =i {1, 2}). Alice will inform Bob that which serial number should be 
reserved. Finally, Alice and Bob both can keep the same MB, i.e, the process of synchronizing MB is completed. 
The second stage is that M are required to be preprocessed to derive ′x̂ k( ) which should be represented as x̂ k( ) with 
LMB, and one or more ′x̂ k( ) can be transformed by a set of LMB. The third stage is that the neural network is 
required to be trained for correctly performing encryption and decryption. Finally, Alice sends each block 

ˆC h E( , )k k( ) ( )  to Bob in the dedicated communication channel. Bob receives these cipher blocks and sends them to 
the same neural network for decryption.

Security and performance analysis.  With respect to the cryptography algorithm based on CV-QNN, the 
following types of resistance are introduced in this section to discuss the security and performance.

Resistance of attacking on cipher.  Currently there are two main attack ways on ciphertext in communications: 
ciphertext eavesdropping and message replay.

Figure 5.  The process of decryption. ĥ k( ) and E k( ) can be parsed according to cipher block ˆC h E( , )k k( ) ( ) . ĥ k( ) is 
input into the CV-QNN for outputting ŷ k( ), plaintext x̂ k( ) can be achieved with the combination of E k( ) and 
ψ ψ〈 | | 〉ˆ ˆ ˆx y x( ) ( )k k k( ) ( ) ( ) . The process of data verification is shown in the top dotted box, where ′ĥ k( ) is used to verify 

the integrity of the data received by the receivers.

Figure 6.  The whole communication stages between sender and recipient, namely Alice and Bob. The first 
stage is to obtain LMB for Alice and Bob. The second stage is preprocessing for transforming classical data into 
qumodes. Besides, qumodes should be represented by LMB. The third stage is the preparation of initial keys. 
The fourth stage is encryption and decryption.

Figure 7.  An example that Alice transforms m quantum states {Q1, Q2, ⋯, Qm} into ⋅ ⋅ ⋅q q q{ , , , }m1 2  with 
m sets of MB A( ) which are randomly selected from MB MB{ , }1 2 . It can be seen that serial numbers of MB A( ) are 
“1112211...2”.

https://doi.org/10.1038/s41598-020-58928-1
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For the ciphertext eavesdropping attack, the adversary Eve, cannot eavesdrop on correct cipher without the 
corresponding LMB in the scheme. The number of cipher block and that of LMB is denoted as a, b, respectively, 
so the success probability of eavesdropping on cipher is ( )b

a1 . Fig. 8 demonstrates that the more LMB and cipher 
blocks can reduce the probability of successfully intercepting cipher. In general communications, just two sets of 
LMB can contribute to high security. For the message replay attack, assume that Eve wants to cheat the receiver 
with the prepared quantum states instead of real cipher and she sends the fake cipher to receiver. Specifically, Eve 
changes ĥ k( ) and/or E k( ), and sends them to Bob for the purpose of message replay. Then Bob decrypts and gets 
data ′x̂ k( ), meanwhile ′x̂ k( ) are used as the inputs of the neural network to get ′ĥ k( ). According to the comparison 
between ĥ k( ) and ′ĥ k( ), Bob can decide whether to halt this communication or not. Even when a powerful adver-
sary wants to choose the ciphertext ′ ′ ′ˆC h E{ , }k k( ) ( )  to just succeed in passing the whole verification of MAC, she 
should change ĥ k( ) and E k( ) reasonably. Moreover, operations with exponential complexity O(2 )n2  are required for 
replaying the n-bit cipher. Therefore, the encrypted information cannot be eavesdropped for the attacker lacking 
corresponding LMB and cipher replay attack cannot be successful for required exponential difficulties to pass the 
whole MAC. These small probability events of successfully attacking cipher make the scheme achieve high secu-
rity. This kind of attack is more impossible for CV-QNN with continuous variables, because the attacker cannot 
know the continuous cipher with brute force. It is also impossible that the invader wants to synchronize an 
unknown neural network to crack cipher unless he knows the structure of the neural network very clearly41. Thus 
the scheme can resist cipher attack and ensure the security of the proposed cryptography algorithm to the maxi-
mum extent.

Resistance of system forgery attack.  Refer to the situation that the private key is static during the process of an 
encryption, the cryptanalyst can analyze the key by intercepting numerous of plaintexts with corresponding and 
available ciphers even in the classical extensive neural network cryptosystem. For simulating a neural network 
similar to the cryptosystem, the attacker can train a new neural network with the intercepted data and compare 
the outputs of network with available ciphertext to adjust train algorithm, network architecture etc. to obtain 
plaintext directly. Furthermore, it is a non-negligible attack for synchronizing network cryptosystems42.

Suppose that a hacker can copy the intercepted quantum plain and corresponding cipher to construct a similar 
cryptography model, which seems to be a threat for our scheme, and it is worth considering. The neural network 
can keep instable so that the generated cipher can be chaotic and unpredictable for resisting the attack. Similar to 
TCP congestion control mechanism, learning rate adaption which can adjust the learning rate during the process 
of encryption contributes to solve the problem37. Define a parameter ξ ∈  and compare ξ with the value of loss 
function E k( ) to control learning rate η. When ξ is less than E k( ), learning rate is increased (i.e., η multiplied by the 
increase factor R1 in Table 1), otherwise reduced (i.e., η multiplied by the decrease factor R2). The instable neural 
network which can generate chaotic cipher is impossible to be successfully simulated by any hacker who cannot 
find the laws of encryption. In addition, each plaintext block is encrypted with a pair of corresponding secret keys 
denoted by τ ″k  where ″ = ... 





k 1, 2 , L M
m
( ) , the total length of the keys should be the sum of τ ″k . According to  

Eq. (11), the composition of key Kall can be expressed as

Figure 8.  The success probability of cipher eavesdropping for an attacker. When the sets of LMB is 2 and 
the number of cipher blocks is greater than 10, the success probability of intercepting cipher tends to 0. For 
the situation that when the sets of LMB is 3 and the number of cipher blocks is just larger than 6, the success 
probability of cipher eavesdropping is 0.
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where k k
1φ ′  and φ ′k k

2 are the phase of rotation R1 and R2 respectively, and “Π” is just the stitching of the total keys. It 
is apparent that Kall is hard to be speculated because φ φ ∈′ ′ { , }k k k k

1 2 . Hence the system can strongly resist the 
attack on keys, i.e., when messages are encrypted by the neural network, the invader has no way to attack the 
algorithm or keys regardless of brute force.

Resistance of the chosen-plaintext attack.  The attacker may disguise himself as the sender, then he sends parts of 
information to the recipient and intercepts ciphers by capturing packets. In this way, the attacker may guess parts 
or even all keys, or the operating mechanism of the cryptosystem with a certain probability. Let κ be a channel 
composed of plaintext and ciphertext blocks, and private keys, i.e., κ = T T K{( , ), }plain cipher prvite , where 
T T K, ,plain cipher prvite represent the plaintext, ciphertext and private keys, respectively. The probability of invaders 
getting Kprvite using blocks T T( , )plain cipher  is very low for the keys consisting of multiple and continuous parame-
ters as shown in Eq. (14) and secretly preserved Kprvite, especially for quantum information. Due to the fact that 
under the same conditions, quantum ciphertext ambiguity is higher than classical ciphertext’s43 and LMB intro-
duced in the scheme reduces the success probability of chosen-plain attack since correct packets are hard to be 
captured. So the success probability of the chosen-plaintext attack can be 0, i.e., | =p K T T( ( , )) 0prvite plain cipher  when 
certain security conditions are met, such as increasing the sets of LMB. Just as Fig. 8 shows when the sets of LMB 
is 2, the success probability of the attacker’s eavesdropping on the correct cipher is 0 only with a few cipher blocks. 
The mutual information between T T( , )plain cipher  and Kprvite can be expressed as follows:

∑

∑

=

×
|

= |

×
|

=

⁎

I T T K p T T K
p K T T

p K

p T T p K T T
p K T T

p K

(( , ), ) (( , ), )

log
( ( , ))

( )

( , ) ( ( , ))

log
( ( , ))

( )
0 (15)

plain cipher prvite plain cipher prvite

prvite plain cipher

prvite

plain cipher prvite plain cipher

prvite plain cipher

prvite

=I T T K(( , ), ) 0plain cipher prvite  indicates that κ is perfect and confidential. Hence the scheme can resist the 
chosen-plaintext attack.

Performance analysis.  Due to quantum properties, more classical information can be encoded into multiple 
degrees of freedom of a quantum state. Hence quantum neural network can carry more information than classical 
cryptosystem. For the sake of simplicity, classical information and quantum states are one-to-one mapping in our 
scheme. Compared to the cryptosystem which always requires a new private key for “one-time pad” resulting in 
increasing the communication time, the cryptography algorithm based on CV-QNN has an effective performance 
with parallel computational power44 and high key utilization. Define the total number of neurons as mn where m 
is the number of neurons per neural layer and n is the number of neural layers, the number of average operators 
in a neuron as Op. The minimum key utilization ratio can be expressed as μ.

μ =
∗

.
L M

mn O
( )

(16)p

With the assistance of learning process of quantum neural network, as the number of encryption increases, the 
changeable number of weights may slowly decreases. It means that the neural network converges and encrypts 
faster, especially when correlations are existed between plain. In the Fig. 9, the weight changes at different steps 
are shown, and the all configuration parameters are from the fourth simulation experiment in subsection 
“Simulation” of the paper. We can see that from the 100th step to the 500th step, the weight gradually converges, 
i.e., Op becomes small. Particularly, the value of Op reduces, and the key utilization μ increases. Hence compared 
with other cryptography models which are not based on neural network, quantum neural network uses less keys 
to encrypt more data.

Experiment Hidden layers Learning rate Iterations Learning rate adaption

1 6 8e − 2 500 ×

2 6 8e − 2 500 Control value ξ = 0.04 Increase factor R1 = 2 Decrease factor R2 = 0.8

3 6 >2.0 500 Control value ξ = 0.04 Increase factor R1  = 2 Decrease factor R2 = 0.8

Table 1.  Configuration parameters for the first, second, and  third experiments.
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Results and Discussion
A CV-QNN model is designed to construct a cryptosystem for encryption and decryption, which is characterized 
by quantum properties and data processing parallelism of neural network. The multiple and continuous variables, 
such as phase parameters of rotation operation, make the system difficult to be cracked by attackers. Moreover, 
the additional key negotiation process is not required since the learning process of CV-QNN for encryption and 
decryption can generate keys. Thus, it is more efficient than other cryptography systems that require key negotia-
tion. The capability of LMB is introduced in the pre-process, which can solve the problem of cipher eavesdropping 
during the process of communications, though it may increase overheads. Cryptosystem based on ANN is mostly 
threaten if attackers capture amount of information to simulate a similar neural network to process data. Hence, the 
analogical method of “TCP congestion control” is applied to keep the network instable for resiting system forgery 
attacking. The simulated encrypted results demonstrate the security can be improved by adapting parameters (the 
depth, the learning rate and so on), and the decrypted results show that the original plain can be derived without 
any error.

Simulation.  Simulation results are presented with the continuous variable quantum simulation platform, 
named Strawberry Fields32 to validate the feasibility of the scheme. The simulated neural network consists of 8 

Figure 9.  The weights change at different steps. It shows a weight matrix which contains the weights between 
the 7th layer and the 8th layer of neural network every 100 steps. Different colored circles mark different 
training steps. Each row represents the element of weight matrix, such as “row1_1” and “row2_1” are the value 
of the first column of the first row of the matrix and the value of the first column of the second row of the weight 
matrix respectively. The weights gradually change slowly as the encryption times increase, i.e. the weights 
become convergent.

Figure 10.  The first experimental results with optimal learning rate (η = −e8 2) and without learning rate 
adaption. (a) The cipher1 from the penultimate output ĥ k( ) of the neural network, and that the cipher1 are just 
similar to plaintext indicates the quantum neural network can correctly encrypt data well. (b) The cipher2 from 
the error function E k( ), and times represents the density scale of displayed data.
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layers, the cutoffdim which is Hilbert space truncation dimension is 2. Several experimental simulations are done 
with different learning rate, and three representative groups of experiments are selected to explore the specific 
cryptography task. In Table 1, ξ is the control value to adapt learning rate for keeping instability of the neural 
network, and a optimal learning rate is 8e − 2 for the experiments. Training algorithm is Adam which is an auto-
matic optimization algorithm on the simulation platform. It is worth mentioned that the quantum neural network 
can accept both quantum information and classical information, and during the processes of experimental simu-
lations, classical plain “Quantum Cryptography” is preprocessed into 139-bit binary string, which is taken as an 
example to be the input of CV-QNN.

The first experimental results are shown in Fig. 10. Cipher1 ĥ k( ) (shown in Fig. 10(a)) is the output of penulti-
mate layer of the neural network. Cipher2 E(k) (shown in Fig. 10(b)) is the 2-dimensional function between input 
and output, times represents the density scale of displayed data. Note that the maximum error rate between x̂ k( ) 
and ŷ k( ) is only 0.3% according to Fig. 10(b), which verifies that the quantum neural network can correctly encrypt 
data. Despite cipher1 approximates to plain, attackers are difficult in stealing the all correct cipher by means of 
intercepting information for the existence of the LMB known only by the sender and receiver. Consider that the 

Figure 12.  The comparison results between “run time with learning rate adaption” (RT) and “run time without 
learning rate adaption” (RT-N), or the first experiment and the second experiment where the dominant 
frequency of running CPU is 3.70 GHz. It can be seen that from the 100th steps to 500th steps, the RT is always 
less than RT-N. For example, the RT is less than RT-N by around  0.1 s in the 300th steps, which demonstrates 
that the method of introducing learning rate adaption can accelerate the process of encryption.

Figure 11.  The second experimental results with optimal learning rate (η = −e8 2) and learning rate adaption. 
(a) The cipher1. (b) The cipher2. cipher1 gradually approximates plain during the process of encryption. At 
about 80 times, chaotic cipher1 starts to be formed with the addition of the method of learning rate adaption. 
Similarly, cipher2 closes to 0 with maximum error rate 0.3% after 20 times and becomes chaotic after 80 times.
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static secret keys may expose a quantum neural cryptosystem to system forgery attack. Hence in the second 
experiment shown in Fig. 11, we try to introduce the solution of “TCP congestion” to keep the neural network 
instable resisting the attack. To be specific, the neural network should be trained during the process of encryption, 
when the neural network tends to be stable, the method of learning rate adaption is involved to acquire chaotic 
cipher. In Fig. 11(a), cipher1 obviously approximates plain x̂ k( ) after 20 times. At about 80 times, the method of 
learning rate adaption is utilized and then unpredicted ciper1 is generated. Similarly, chaotic cipher2 shown in 
Fig. 11(b) also can be obtained. The presentation of Fig. 11 demonstrates that the learning rate adaption can 
improve the security indeed and can reduce the time of encryption process (seen in Fig. 12). The third experimen-
tal results are used to analyze the relation between the learning rate and security, and we find that a overlarge 
learning rate cannot correctly present cipher effects. In Fig. 13, when the learning rate is large (e.g., greater than 
2.0 referring to Table 1), the cipher1 ĥ k( ): = 0 (shown in Fig. 13(a)) and cipher2 = ˆE x:k k( ) ( ) (shown in Fig. 13(b)) 
which are insensitive to plaintext and cannot provide any information for decryption.

In these experiments, if the attacker wants to intercept correct cipher1 and cipher2, due to the fact that he 
cannot have a corresponding quantum neural network cryptosystem and LMB for decryption, the violent solving 
must be his optimal weapon45. Thus he needs to try both 2139 operators to guess ĥ k( ) and E(k), and he expects to 
match ĥ k( ) and E(k) for 2139 * 2139 times as well for achieving plaintext. Finally, the attacker needs to try Ts times to 
crack ciphertext, and the probability of correctly guessing cipher is ( ) ( )1

2

139 1
2

139
.

= ∗ + + .Ts 2 2 2 2 (17)139 139 139 139

Figure 13.  The third experimental results with high learning rate (such as η = 3.0) and learning rate adaption. 
(a) The cipher1. (b) The cipher2. The values of cipher1 are all 0, which cannot correctly present cipher effects 
and indicates that the outputs of CV-QNN are too divergent when the learning rate is high.

Figure 14.  Original plain (described by blue dot) and decrypted plain (described by red square). Decrypted 
plain is exactly same as original plain in the figure indicating that the CV-QNN is trained well and can decrypt 
data without any error.
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Thus the encrypted classical information with our CV-QNN is intractable to be cracked according to above 
discussions. For the other situation, when the inputs of CV-QNN are continuous-variable quantum states infor-
mation, the theoretically unconditional security can be derived for the quantum characters, the continuities of 
continuous-variable quantum states and the private key. Hence the security of our system can be ensured regard-
less of the classical information or quantum states. Besides, a decrypted simulation with configuration parameters 
of the second experiment except for the method of learning rate adaption shows in Fig. 14, where input plaint 
and decrypted plain are perfectly matched, which demonstrates that constructing a cryptosystem with CV-QNN 
is effective.

Conclusions
An available and secure cryptography algorithm has been proposed, in which an extended cryptography 
model based on CV-QNN is utilized to encrypt and decrypt data. Security and performance analysis shows 
that the cryptography algorithm can resist cipher eavesdropping, message replay, system forgery attack and the 
chosen-plaintext attack to guarantee information security and speed up encryption process simultaneously. 
Moreover, the algorithm inherits the merits of quantum properties, and the experiments results simulated on 
Strawberry Field platform show that the scheme can correctly encrypt and decrypt data effectively including 
classical or quantum data. It indicates the first attempt for combining CV-QNN with quantum cryptography, 
and inspires more potential applications of quantum neural network on quantum devices, such as quantum key 
distribution (QKD) which can be implemented by the synchronization of QNN.
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