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Fully body visual self-modeling of robot morphologies
Boyuan Chen1*, Robert Kwiatkowski1, Carl Vondrick1,2, Hod Lipson2,3

Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to 
plan and control their actions. These “self-models” allow robots to consider outcomes of multiple possible future 
actions without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled 
machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward 
kinematic models can only predict limited aspects of the morphology, such as the position of end effectors or 
velocity of joints and masses. A key challenge is to model the entire morphology and kinematics without prior 
knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of 
directly modeling forward kinematics, a more useful form of self-modeling is one that could answer space occupancy 
queries, conditioned on the robot’s state. Such query-driven self-models are continuous in the spatial domain, 
memory efficient, fully differentiable, and kinematic aware and can be used across a broader range of tasks. 
In physical experiments, we demonstrate how a visual self-model is accurate to about 1% of the workspace, 
enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the 
robot to detect, localize, and recover from real-world damage, leading to improved machine resiliency.

INTRODUCTION
Building computational self-models of robot bodies, or the ability 
of a robot to simulate its physical self, is an essential requirement for 
robot motion planning and control. Similar to humans and animals 
(1, 2), robots can use self-models to anticipate future outcomes of 
various motion plans without explicitly trying them out in the physical 
world. Predictions obtained using a self-model can be used in 
decision criteria of future actions. A consistent self-model, once 
acquired, can be repurposed to many different tasks and thus can 
serve for lifelong learning.

Most available robotic systems rely on dedicated physical simu-
lators for task planning and control (3–8). However, these simula-
tors require extensive human effort to develop, calibrate, and maintain 
over the lifetime of the robot. In contrast, fully data-driven self-
modeling enables machines to learn their forward kinematics directly 
in situ using task-agnostic interaction data.

However, data-driven forward kinematic self-models must know 
in advance what aspects of the robot need to be modeled, such as the 
tilt angle of the robot (9), the position of end effectors (10), the 
velocity of motor joints (11), the mirror image of animatronic faces 
(12), or the contact locations, as well as joint configurations of robot 
grippers (13). The restricted predictive scope of traditional data-
driven self-models limits the general applicability of these self-models 
to future, yet unknown, three-dimensional (3D) spatial planning 
tasks. For example, a data-driven self-model focusing only on pre-
dicting the position of an end effector may not be useful for tasks 
involving operation in a crowded workspace, where full body colli-
sions must be factored into the planning. Making sure that the 
entire robot arm motion will be collision free is a critical aspect for 
numerous safe robot operations such as object retrieval, trajectory 
planning, and human-robot interaction. Data-driven modeling the 
entire robot morphology and kinematics, without prior knowledge 

of what aspects of the morphology are relevant to future tasks, has 
remained a major challenge.

Here, we present a full-body visual self-modeling approach 
(Fig. 1 and Movie 1) that captures the entire robot morphology and 
kinematics using a single implicit neural representation. Rather 
than predicting positions and velocities of prespecified robot parts, 
this implicit system is able to answer space occupancy queries given 
the current state (pose) or the possible future states of the robot. For 
example, the query-driven visual self-model can answer queries as 
to whether a spatial position (x, y, z) will be occupied if the joints 
move to some specified angles. Because both the spatial and robot 
state inputs are real values, our visual self-model allows continuous 
queries in the domain of both control signals and spatial locations. 
Furthermore, the learning process only requires joint angles and 
sparse multiview depth images, which enables generalizable and 
scalable data acquisition without human supervision.

Once learned, the responses from this single visual self-model to 
a series of queries can then be used for a variety of 3D motion 
planning and control tasks, although the self-model was only trained 
with task-agnostic random motor movements. Because of our fully 
differentiable parametrization, the robot can directly perform effi-
cient parallel gradient-based optimization on top of the self-model 
to search for the best plans in real time. We can also combine the 
self-model in a seamless manner with existing motion planning 
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Movie 1. Overview of full-body visual self-modeling of robot morphologies. 
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techniques. Moreover, when the robot sustains physical damage, 
such as a broken motor or changed morphology, our self-model 
can detect, identify, and recover from these changes. Because our 
self-model is inherently visual, it can provide a real-time human-
interpretable visualization of the robot’s internal belief of its current 
3D morphology and state. This ability to sense pose-conditioned 
space occupancy is perhaps not unlike our natural human ability to 
“see in our mind’s eye” whether our body could fit through a narrow 
passage, without actually trying it out in reality (14).

Implicit visual self-model representation
Robots operate in a 3D world, and therefore, being morphologically 
and kinematically aware in 3D space is essential for them to success-
fully interact with the physical environments and adapt to potential 
changes in the field. Traditionally, robot engineers build a physical 
simulator and integrate it with computer-aided design (CAD) models 
of the robot. However, designing a simulation environment is not 
trivial. Accurate CAD models that reflect the real as-built robot 
geometry may not be easily available, especially for robots that have 
been modified because of damage, adaptation, wear, and repair. 
This challenge will likely become more acute as the variety and 
complexity of robotic systems continue to increase in the future and 
especially as robots must operate with less human supervision, 
maintenance, and oversight.

We therefore aim to learn the self-model of robots directly 
through task-agnostic data with minimal human supervision or 
domain knowledge. Our goal is to learn a visual self-model that can 
capture the entire body morphology and kinematics without prior 
knowledge of the body configurations such as joint placements, part 
geometry, motor axis, and joint types. With the visual self-model, a 
robot should be able to plan its future actions by rolling out the 
self-model before executing any actions in the physical world. We 

can also visualize its final plan from 
different viewing angles because the 
model itself is 3D.

There are two major challenges when 
designing a visual self-modeling pro-
cess. First, we need to carefully decide 
how to represent the 3D geometry of 
the robot body. Most existing 3D repre-
sentations are explicit, such as point 
cloud, tessellated triangle meshes, or 
voxelized occupancy grids. However, 
such approaches come with several 
limitations. Point clouds, meshes, and 
grids often consume large amounts of 
memory to store even a single geometry, 
let alone a kinetic geometry dependent 
on input degree of freedom (DoF). 
Point clouds also lose structural con-
nectivity, although voxel representations 
lose continuous resolutions. These limita-
tions are amplified in kinematic tasks 
because the self-models are expected to 
be dependent on trajectories of multi-
ple DoFs of the robot.

The second challenge concerns the 
computational efficiency of leveraging 
the learned visual self-model for down-

stream task planning. Once a visual self-model is formed, we hope 
that the same model can be used for many tasks. In other words, the 
model must be task agnostic. Furthermore, real-time planning and 
control is critical for many robotic applications. Therefore, the ideal 
representation should render the 3D model in a parallel and 
memory-efficient manner using graphics processing unit (GPU) 
hardware. The model should also provide fast inference capability 
to solve common inverse problems in robotics, such as inverse ki-
nematics. Last, not every component of the robot body weighs 
equally in all tasks, so it should be possible to query different spatial 
components of the visual self-model as needed. For example, the 
full 3D knowledge of the robot base and 3D geometry of other arm 
components are not required when calculating the inverse kinematic 
solution of a robot arm trying to reach a 3D object with its end 
effector.

We overcame the above challenges by proposing a state condi-
tioned implicit visual self-model that is continuous, memory effi-
cient, differentiable, and kinematic aware. The key idea is that the 
model does not simply predict future robot states explicitly; instead, 
it is able to answer spatial and kinematic queries about the geometry 
of the robot under various future states.

To construct a query-answering self-model, we leverage implicit 
neural representations to model the 3D body of the robot as shown 
in Fig. 2. Given a spatial query point coordinate X ∈ ℝ3 normalized 
on the basis of scene boundary and a robot joint state vector A ∈ ℝN 
specifying all the N joint angles, the visual self-model can be repre-
sented by a neural network to produce the zero-level set signed dis-
tance function (SDF) of the robot body at the given query point X.

We use SDF as a representation of 3D shapes (15). An SDF is a 
continuous field in which each point is associated with a magnitude 
value representing its closest distance to a surface and a sign (−or+) 
indicating if the point is inside or outside the surface boundary. 

Fig. 1. Visual self-modeling robots. We equip the robot with the ability to model its entire morphology and kine-
matics in 3D space only given joint angles, known as visual self-model. With the visual self-model, the robot can 
perform variety of motion planning and control tasks by simulating the potential interactions between itself and the 
3D world. Our visual self-model is continuous, memory efficient, differentiable, and kinematic aware.
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Through this network, the robot morphology is represented as the 
zero-level isosurface of the function. Please refer to the Supplemen-
tary Materials for more background information about the SDF 
representation.

Formally, the model can be expressed as

	​ SDF  =  {X  ∈ ​ ℝ​​ 3​, A  ∈ ​ ℝ​​ N​∣F(C(X) , K(A ) ) }​	

where C is the coordinate neural network with several layers of mul-
tilayer perceptrons (MLPs) to encode the spatial coordinate fea-
tures, K is the kinematic neural network with several layers of MLPs 
to encode the robot kinematic features, and F is the last few layers of 
MLPs to fuse the features from both the coordinate network C and 
kinematic network K after concatenating their outputs to produce 
the final SDF values conditioned on the queried spatial coordinates 
and current joint angles. We omit the batch size here for simplicity. 
For nonlinear activation functions, we used sine functions to pre-
serve the details on the 3D models (16).

We trained the network by formulating the problem as an 
Eikonal boundary value problem. Instead of supervising the network 
with the ground-truth SDF, similar to Sinusoidal Representation 
Networks (SIREN) (16), we directly used point clouds and surface 
normals obtained by fusing observations from sparse RGB-D camera 
views as labels, as indicated in Fig. 2. In both simulation and real-
world setup, we used five RGB-D cameras to capture pairs of data 
for training, namely, the joint angles and the fused point cloud. During 
testing, the only available robot-related information to our visual 
self-model is a set of joint angles. More details of the network archi-
tectures and loss functions are discussed in Materials and Methods.

Overall, our visual self-model is formed by several layers of 
MLPs that implicitly capture the entire morphology and kinematics 
of the robot body. We implemented the network with differentiable 
deep learning framework so that it can be easily deployed on GPUs 
with end-to-end differentiable capabilities. Although the entire 
self-model only consumes 1.1 megabytes to store its weights, our 
visual self-model can represent the 3D morphology of the robot 
body with different kinds of joint angles at various continuous 
spatial locations. By separating the kinematic feature encoder and 
coordinate feature encoder into two subnetworks, each subnetwork 

captures independent semantic meaning. As we will show next, this 
property allows the self-model to learn rich kinematic features use-
ful for downstream tasks.

3D self-aware motion planning
We aim to use the learned visual self-model in various motion planning 
tasks in 3D space. In this section, we will present algorithm designs 
to show the used cases for three sample tasks (Fig. 3). However, our 
model is not limited by only those three tasks. Rather, we use them 
as representative examples for demonstration purposes, and we 
expect that the model can generalize to other possible tasks.

1) Touch a 3D sphere with any part of the robot body. The goal 
of this task is to touch a 4-cm-diameter sphere using any part of the 
robot body. To solve this problem, the robot needs to calculate 
inverse kinematics in 3D without constraints on which specific body 
piece touches the target object.

2) Touch a 3D sphere with end effector. This task not only re-
quires the robot to touch a target sphere but also asks the robot to 
touch it with the end effector link. This is a harder task because the 
robot needs to solve inverse kinematics in 3D with a particular link 
constraint. The solution space is quickly reduced.

3) Touch a 3D sphere with end effector while avoiding an obsta-
cle. In this task, we ask the robot to go beyond computing a target 
end state with or without link constraints. Instead, to succeed at this 
task, the robot needs to perform precise motion planning in 3D to 
touch the final target while avoiding a large obstacle shown as red 
block in Fig. 3. Overall, the robot is tasked to propose an entire safe 
trajectory from its initial state to the target state. During the execu-
tion of the proposed trajectory, the robot will fail the task if any part 
of the robot body collides with the obstacle.

To solve these motion planning tasks, one immediate thought is 
to obtain the entire robot body meshes and load them into existing 
robot simulators. This can be done by traversing all possible spatial 
points under certain precision and different sets of joint angles 
through the implicit neural representation and rendering the entire 
3D robot mesh with postprocessing algorithms (17). Such usage of 
the visual self-model seems to be a straightforward solution to 
bypass the need to construct robot kinematic and geometric models 
such as CAD and Unified Robotics Description Format files. 

Fig. 2. Implicit visual self-model representation. (A) Real-world setup for data collection. We fused sparse views from five depth cameras to capture the point cloud of 
the robot body. As the robot arm randomly moved around, we recorded pairs of the robot joint angles and its 3D point cloud. See movie S1 for real-time data collection. 
(B) The computational diagram of our visual self-model. The coordinate network takes in the spatial coordinate, and the kinematic network extracts kinematic features 
from the input joint angles. We then concatenated the spatial features and the kinematic features into a few layers of MLPs to output the zero-level set SDF values. The 
implicit representation can be queried at arbitrary continuous 3D spatial coordinates and different sets of joint angles.
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However, in practice, we found that constantly loading new robot 
meshes and destroying old robot meshes in commonly available 
robot simulators cost a substantial amount of time. This limits the 
possibility of applying this method for real-time planning and 
control.

We propose to frame the first two tasks as constrained optimiza-
tion problems by leveraging the differentiability of the visual 
self-model and its capability of answering partial queries on spatial 
coordinates. Specifically, for the first task, we initialize thousands of 
sets of joint angles. We then sample $P$ points uniformly on the 
surface of the target object. Because the output of the visual 
self-model will be zero when the queried spatial point is on the sur-
face, the overall objective is to find the set of joint angles that can 
minimize the total sum of output values across all the sampled 
points on the target object. By freezing the weights of the learned 
visual self-model, we can perform gradient descent from the output 
surface predictions with respect to the input joint angles, under 
the constraint that the motor angles have to be within the range of 
[−, +].

Formally, the constrained optimization problem can be ex-
pressed as

	​​ A​​ *​ =  min ​𝔼​ ​A​​ b​​​ [ ​Σ​ ​T​​ p​​​ F(C(​T​​ p​ ) , K(​A​​ b​ ) ) ] , s . t . −   ≤ ​ A​i​ 
b​ ≤ , i  = 1, 2, 3, 4​	

where T ∈ ℝP × 3 is the sampled points on the target object, i is the 
motor index, and b = 1,2, …, B is the index of each sampled set of 
joint angles with the maximum value B to be the batch size on a 
single GPU. Because the visual self-model runs parallelly on a GPU 
with small consumption of memories, the entire optimization pro-
cess can produce accurate solutions within a short period of time. 
With more GPUs, the process can be further sped up.

To solve the second task, we need additional information about 
where the end effector locates relative to the entire robot body. 
Because the current visual self-model was only trained to capture 
the overall body geometries, similar to other works in self modeling, 
we can supervise the visual self-model to predict the end effector 
location at the same time. The good news is that our visual self-model 
already has a specialized subnetwork that implicitly captures the 
robot kinematics. Therefore, we can directly use the pretrained 
weights of the kinematic subnetwork and train only two nonlinear 
layers of MLPs E attached to the end of the subnetwork with little 

additional efforts. As we will show in Results, our visual self-model 
provides a strong semantic proxy to pretrain the kinematic sub-
network, leading to superior performance than training a specialized 
network to predict the end effector position from scratch. Without 
our decomposition formulation of kinematic subnetwork, the 
acquired kinematic information may not be easily distilled as an 
independent feature for future use.

Similar to the first task, we now can formalize the solution of the 
second task by adding another objective function to make sure the 
resulted end effector reaches the target object. The overall optimiza-
tion problem can be formalized as follows

	​​ A​​ *​ =  min ​𝔼​ ​A​​ b​​​ [ ​Σ​ ​T​​ p​​​ ​​ EE​​ E(K(​A​​ b​ ) ) + ​​ SDF​​ F(C(​T​​ p​ ) , K(​A​​ b​ ) ) ] , s . t . −   ≤  
          ​A​i​ 

b​ ≤  , i =  1, 2, 3, 4​	

As discussed above, the objective function includes two terms 
weighted by hyperparameters EE and SDF. The first term ensures 
that the end effector touches the target object, and the second term 
encourages the robot body to touch the target object. We found that 
adding a small SDF consistently achieves better results.

Regarding the third task, our visual self-model can directly work 
with existing motion planning algorithms with minimal changes. 
There has been great success (18) on motion planning algorithms to 
solve obstacle avoidance problem in high-dimensional state and 
action spaces. We thus combine our visual self-model with the 
existing algorithms in a plug-and-play manner. Specifically, we use 
RRT* (19) as our backbone algorithm due to its popularity, proba-
bilistic completeness, and computational efficiency. Generally speak-
ing, there are two major components in RRT* that require physical 
inference with robot bodies: The first component is to calculate the 
goal state, and the second component is to check whether a collision 
will happen given a particular state of the robot. With these two 
components, various planning algorithms can narrow the search 
space to the final solution without having to explicitly query robot 
status again.

Traditionally, these two components require a dedicated robot 
simulator and predefined robot bodies. With our visual self-model, 
we can reach the final solution by simply performing fast parallel 
inference on the learned model. Specifically, the goal state can be 
obtained by running the same optimization procedure as in the 
second task. For collision detection, we can pass uniformly sampled 

Fig. 3. 3D self-aware motion planning tasks. We present an overview of three different tasks. “Touch 3D sphere with any part of the robot body” asks the robot to 
generate a set of target joint angles such that some part of the robot body needs to be in contact with a randomly placed target sphere. “Touch a 3D sphere with end 
effector” requires the robot to generate a set of target joint angles such that the robot needs to touch a randomly placed target sphere with its end effector link. “Touch 
a 3D sphere with end effector while avoiding obstacle” tasks the robot to propose an entire set of collision-free trajectories in the form of intermediate joint angles to 
touch a randomly placed target sphere using its end effector. The three tasks gradually become harder with more constraints.
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points on the obstacle surface and the given set of joint angles Aquery 
through our visual self-model as shown below. If the total sum of 
the output values over all the sampled points is equal to or below a 
small threshold , then there is a collision. Otherwise, the robot will 
not collide with the obstacle object

	​​ Collision  = ​ {​​​ 
True, ​Σ​ ​O​​ i​​​ F(C(​O​​ i​ ) , K(​A​ query​​)) ≤ ;

​   
False, ​Σ​ ​O​​ i​​​ F(C(​O​​ i​ ) , K(​A​ query​​)) > ;

​​​	

Damage identification and recovery
One major promise of machines that can model or identify them-
selves is the capability of recognizing and inspecting damage or 
changes and then quickly adapting to these changes. In this section, 
we present our method to identify and recover from damage using 
the learned visual self-model.

Our approach involves three steps. The robot first detects a dam-
age or change on its body compared to its original (intact) geome-
try. Then, the robot can identify which specific type of damage or 
change is happening. Last, the robot will gather new information 
about itself with limited data and computational resources to quick-
ly adapt its self-model to the new changes.

Overall, our approach introduces several substantial advantages 
over previous methods. First, being able to recognize the specific 
type of damage or change enables the robot to provide additional 
feedback information. Previous works have shown that it was pos-
sible to detect damage. However, they were not able to provide ad-
ditional information to identify the source of the change or which 
specific type of damage has happened. This information is extremely 
helpful when the damage requires hardware repair. Instead of relying 
on a domain expert to perform a series of inspections, our method 
can automatically generate information about specific damage, such 
as “the second joint motor is broken.”

Another advantage is that our approach performs modeling in 
the 3D visual world. This means that we can visualize and render 
the internal belief of the visual self-model in a straightforward and 
interactive fashion. As we will show in the results, one can immedi-
ately tell which section of the internal belief of the robot body does 
not match the real-world counterpart. We can further tell visually if 
the internal belief has been updated to match the new changes after 
learning from new observations.

In the following sections, we begin by describing the specific algo-
rithms, and then we follow with real-world results in the next section. In 
the first step, we measure the current prediction error and the original 
prediction error. The current prediction error is computed by compar-
ing the internal belief expressed by the learned visual self-model with 
the current observed 3D mesh of the robot, whereas the original predic-
tion error is computed by comparing the same internal belief with the 
previously observed 3D robot body. Both cases share the same joint 
conditions. By comparing these two prediction errors, a large gap can 
inform us about a notable change or damage to the robot body.

In the second step, we aim to identify the specific type of damage 
happening on the robot. On the basis of the robot arm platform we 
are experimenting with, we assume two types of potential changes: 
broken motor and changed topology.

To reveal which specific type of the current damage is, our key idea 
is to solve the inverse problem with the learned visual self-model. Con-
cretely, on the basis of a single current observation of the robot body, 
we infer the best joint angles that the robot should have executed to 

result to the current 3D observation. This is a very challenging prob-
lem because an ideal joint angle set needs to give accurate 3D recon-
struction of the entire robot body. Relying on previous gradient-based 
optimization algorithm is inefficient because the final gradient com-
putation requires the sum over all the sampled points on the whole 
robot body. This process takes a large amount of memory and com-
putation resources to perform a single gradient step due to the large 
volume of the robot mesh. Instead, we propose to use random search 
to locate the best possible joint angles. The simple random search 
algorithm works very well in this case. It does not require the accumu-
lation of any gradient information so that larger batch of queries 
can fit on a single forward pass of visual self-model.

With the inferred joint angles, we can quantify the damage by 
comparing them with the actual input motor commands. If a specific 
inferred joint angle is always different from the actual input and that 
particular inferred angle always stays as a constant value or some 
other random values, then we can tell that the corresponding motor 
is broken. When all the inferred joint angles match closely to the 
actual input commands, the wrong belief of the 3D body then comes 
from a topology change, and all the motors function well. We leave 
the research where both changes happen at the same time or more 
complex changes as future directions.

Last, we also evaluate whether our visual self-model can quickly 
recover from the changes by adapting on several new observations. 
For this step, the main purpose is to demonstrate the resiliency 
of the model, rather than proposing a new algorithm for continual 
adaption. Therefore, we follow common approaches by collecting a 
few more 3D observations after the changes to keep training the 
network for several epochs. We then check whether the new visual 
self-model can successfully update its internal belief to match the 
current robot body both quantitatively and qualitatively.

RESULTS
Visual self-model estimation
We used the WidowX 200 Robot Arm as our experimental platform 
both in simulation and real-world. To obtain the ground truth point 
cloud data, we mounted five RealSense D435i RGB-D cameras 
around the robot as shown in Fig. 2A. Four cameras were around 
each side of the robot to capture side views. One camera was on the 
top to capture the top-down view. All cameras were calibrated. The 
depth images were first projected to point clouds, which were then 
fused into a single point cloud based on the camera extrinsic param-
eters. The final point cloud was generated by clipping the scene with 
a predefined scene boundary.

During data collection, we randomly moved the robot arms to 
get pairs of joint values and its corresponding point cloud. For each 
pair of data, the simulation needed less than 1 s, and the real-world 
collection took around 8 s. In total, we collected 10,000 data points 
in simulation with PyBullet (6) and 7888 data points in the physical 
setup. We partitioned the data into training set (90%), validation set 
(5%), and testing set (5%).

To evaluate the prediction accuracy, we ran several forward pass-
es on the learned visual self-model to obtain the whole-body mesh of 
the robot on the testing set. On a single GPU (NVIDIA RTX 2080Ti), 
this process took about 2.4 s. Following previous works on implicit 
neural representations of 3D models (15, 16), we calculated the 
Chamfer-L1 distance between the predicted mesh and the ground 
truth mesh as our metric. All units in our paper are in meters.
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In simulation, the point cloud fusion was nearly perfect due to 
noiseless depth image and exact camera calibrations. In the real-
world experiments, we noticed that the point cloud fusion was very 
noisy due to imprecise depth information introduced by internal 
sensor errors, noisy camera calibrations, and very sparse viewpoints. 
We did not increase the number of views because the current ground 
truth scan can already reflect the overall pose of the robot, so we tested 
the fidelity of our algorithm directly on the noisy real-world data in 

exchange of adding more resources and time cost. The gap of the 
ground truth data quality between the simulation and real world sug-
gests that the final results in the real-world setup can be greatly im-
proved with better future 3D scanning techniques.

Figure 4B visualizes pairs of predicted meshes and the ground 
truth meshes. In both simulation and real-world cases, our learned 
visual self-model produced accurate estimations of the robot mor-
phology and kinematics, given only unseen joint angles as input. 

Fig. 4. Visual self-model predictions. (A) Quantitative evaluations of our visual self-model predictions in both simulated and noisy real-world environments. Our visual 
self-model outperforms nearest neighbor and random baselines, suggesting that the visual self-model learns a generalizable representation of the robot morphology 
beyond the training samples. (B) With simulated training data, our visual self-model can produce high-quality 3D body predictions given a diverse set of unseen joint 
angles. (C) When the training data becomes highly noisy in the real world due to imprecise depth information, noisy camera calibrations, and super sparse viewpoints, 
our visual self-model can still accurately match the ground truth to reflect the overall robot body morphology and kinematics. See movies S3 and S4 for more examples.
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We also compared our algorithm with a random search baseline and 
a nearest neighbor baseline. For the random search, we randomly 
selected a robot mesh from the training set as the prediction. For the 
nearest neighbor baseline, we compared the testing joint angles with 
all the joint angles in the training set using L2 distance metric and 
then used the robot mesh corresponding to the closest joint angles 
as the final prediction.

We presented the quantitative results in Fig. 4A. Our method 
reached around 0.002- and 0.0102-m Chamfer-L1 distance in simu-
lated and real-world experiments, respectively. Our self-model out-
performed both baselines, suggesting that our visual self-model learns 
the generalizable correspondence between the joint angles and the 
robot morphology, as well as kinematics, rather than memorizing 
the training set distribution. Because the workspace of the physical 
robot is around 0.9 m by 0.9 m by 0.9 m, our visual self-model is 
accurate to about 1% of the workspace calculated as 0.0102/0.9 ≈ 1.1%.

In addition to the predictions on individual set of joint angles, we 
also visualize the predictions over joint angle trajectories by linearly 
interpolating between sets of starting joint angles and sets of target 
joint angles. Both the starting and target joint angles are randomly 

sampled. As shown in Fig. 5, our visual self-model can generate 
smooth interpolations of robot morphologies between small changes 
of joint angles. As we will show next, this property allows our visual 
self-model to generate accurate trajectories for downstream motion 
planning tasks.

3D self-aware motion planning
In this subsection, we aim to evaluate the performance of using our 
visual self-model and 3D self-aware motion planning algorithms for 
three representative downstream tasks: touch a 3D sphere with any 
part of the robot body, touch a 3D sphere with end effector, and touch 
a 3D sphere with end effector while avoiding an obstacle. Detailed 
illustrations of the tasks and algorithms have been discussed above. 
For all three tasks, we present qualitative visualizations of our solu-
tions obtained through the visual self-model in the real-world sys-
tem in Fig. 6. We then introduce our quantitative evaluation results 
in the simulation setup.

For the “touch a 3D sphere with any part of the body” task, our 
evaluation metric measures the Euclidean distance of the closest 
points between the robot surface and the target object surface. We 

Fig. 5. Interpolation between joint angles. We demonstrate that our learned visual self-model can smoothly interpolate between different joint angles. (A) Results 
trained in simulation. (B) Results trained on real-world data. See movie S5 for more examples.
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sampled 100 tasks where the target sphere was placed at different 
3D locations within the reachable space of the robot. If the robot 
was already in contact with the target sphere at initialization, we 
discarded that task and resampled another task. Our results are 
shown in the table S1. We compared our visual self-model with several 
other baselines. To reflect the task difficulty, we first measured the 
initial distance between the robot surface body at its home location 
and all sampled target sphere surfaces. We also compared it with a 
random trial baseline where the only input was also the joint angles, 

similarly to our visual self-model. In this case, the robot randomly 
selected a set of joint angles as its final solution. This baseline gave 
an even worse performance than initial distance, indicating that the 
robot needs to perform careful inverse kinematic calculation with 
considerations of its entire morphology and kinematics. Overall, 
our method produces much more accurate solutions. Furthermore, 
our method was also time efficient during the search stage. Each 
solution took 2.92 s, on average, on a single GPU after 500 optimi-
zation iterations. Note that the solutions generated in this sample 

Fig. 6. 3D self-aware motion planning results. (A) For each of the three tasks, we show the real-world demos by executing the proposed plans from our visual self-model. 
See movie S6 for more examples. (B) We found that our visual self-model enables the kinematic network to gain better generalization performance on downstream tasks 
than a plain kinematic self-model trained from scratch. The standard error of the mean of the distance error is represented by the shaded region.
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application satisfy the constraints but are not necessarily optimal. 
Additional optimization criteria such as energy or peak speed mini-
mization could be added, and many established path planning tech-
niques could be used. We leave such explorations for future work.

For the “touch a 3D sphere with end effector task,” our evalua-
tion metric measures the Euclidean distance between the end effector 
link and the closest point on the target sphere surface. We sampled 
100 tasks and made sure that the robot was not in contact with the 
target sphere at its home configuration. Our results are shown in 
table S2. Similar to the first task, we compared our approach with 
the initial distance and random trial baselines. Both baselines were 
poor at this task with about 36- to 37-cm errors. This is even worse 
than the first task because the presented task requires more accurate 
solutions to consider both the 3D body geometry and the end effec-
tor position.

We have hypothesized that our visual self-model encourages 
strong semantic knowledge of robot kinematics in the kinematic sub-
network. To verify this hypothesis, we reused the pretrained weights 
of the kinematic subnetwork and appended two nonlinear layers of 
MLPs to perform further training only on the newly added layers, to 
regress the end effector link position. The quantity of the data and the 
strategy of data splits followed the same definition with our original 
visual self-model. The test error was around 0.5 cm. We also trained a 
network with the exact same architecture without pretrained weights 
from our visual self-model to predict the end effector position. The 
test error of this model was 1.3 cm, which was nearly three times higher. 
Moreover, when applying these two models separately with our 
motion planning pipeline in table S2, our method reached nearly 
10 times higher accuracy than the model trained from scratch denot-
ed as “end-effector prediction” in the table. These results suggest the 
importance of considering the kinematic structure of the robot 
together with its 3D morphology. In terms of time efficiency, our 
method took 4.93 s, on average, on a single GPU after 500 optimiza-
tion iterations because of the fast parallel inference property.

Furthermore, we found that learning the kinematic structure, 
together with our visual self-model to learn the entire robot mor-
phology, brought stronger generalization capability to downstream 
tasks. In Fig. 6B, every dot represents a task sample. The y axis indi-
cates the error measurements on the task of “touch a 3D sphere with 
end effector,” and the x axis denotes the closest distance between 
each sampled task and their nearest neighbor in the training set. 
Larger values on the x axis mean that the sampled task is farther 
away from the training data distribution. Therefore, the errors of 
the method with strong generalization capability should not in-
crease with the increased distance from the training data distribu-
tion. We thus also plotted a linear regression model fit in the same 
figure. By comparing our visual self-model denoted as red dots and 
the model trained from scratch indicated as blue dots, we can tell 
that our visual self-model obtains a much stronger generalization 
capability, whereas the model trained from scratch will have a much 
higher error when the data are away from the training set.

Last, we also provide results of using different values of link and 
SDF in the objective function. We found that link = 0.8 and SDF = 0.2 
give the best results. Therefore, adding a small regularization with the 
original SDF objective can help achieve better performance in this task.

For the “touch a 3D sphere with end effector while avoiding 
obstacle” task, because the target joint states are generated and eval-
uated through the above task, we are now interested in evaluating 
the capability of generating collision-free trajectory when combing 

existing motion planners with our visual self-model as collision pre-
diction function. Again, we sampled 100 tasks with initial states be-
ing contact free with the robot body. We placed a block of 40 cm 
above the robot base as the obstacle object. The block has a dimen-
sion of 20 cm by 20 cm 20 cm. In total, after running the motion 
planner with our visual self-model, we received 95 of 100 trajecto-
ries that the model believes that no collision will happen along each 
trajectory. We then executed these trajectories and found that 92 of 
the 95 trajectories successfully passed around the obstacle toward 
the target object without any collision. This is a 96.84% success rate 
over all the output trajectories. Our method took 7.43 s, on average, 
to produce an entire trajectory, which includes the time for both 
inferring the target state as presented in the second task and run-
ning the motion planners. This fast inference time enables our 
method to provide real-time planning and control solutions.

Resiliency tests
Being able to identify potential damages or changes to the robot body 
and quickly recover from these changes is a critical capability of intel-
ligent machines in the real world. We made two types of changes to the 
robot body as depicted by Fig. 7A. In the first change, we broke the 
second motor to the end effector link by disconnecting the data trans-
fer cable from the motor, which resulted in the corresponding joint 
always staying at 90°. Motor breakage can happen because of various 
reasons such as loosening cables, overheating, or hardware damage, 
but the common observation is that the motor does not respond to any 
commands. The second change applies to the topology change of the 
end effector link. We attached a 3D printed plastic stick to the end 
effector so that the reachable space of the robot arm was extended. 
This is also a representative change in practical applications when dif-
ferent tasks demand new attachments of tools to the robot body or 
when switching different grippers on a robot arm.

With our proposed algorithm and the learned visual self-model, 
we tested the applicability of our method directly on these real-
world changes. Figure 8 presents several example results. The first 
step is to detect the change. As shown in the first column, our algo-
rithm detected a clear gap between the original prediction errors and 
the current prediction errors. The obvious gaps suggest that our visual 
self-model can capture the changes happening on the robot body.

The second step is to identify the specific type of change. In the 
first two examples, no matter what the input commands were to the 
robot, the second last joint was always inferred to be around 90° by 
solving the inverse problem with the newly observed morphology. 
This consistent mismatch indicates that the second last motor was 
broken and the angle stayed at 90°. In the last two examples, al-
though we can detect that there were some changes from the first 
step, the inferred joint angles were still well aligned with the input 
commands. Following our discussions earlier, our algorithm identi-
fied that there was a topology change on the robot body. Our results 
suggest that our visual self-model can be used to effectively solve 
inverse problems to help identify what body change or damage 
might have taken place. Our approach only requires a single 3D ob-
servation of the current robot to produce the above results to detect 
and further identify the damage.

In the final step, our goal is to evaluate whether our visual self-model 
can quickly recover from the detected changes with only a few new ob-
servations. We first collected a few more observations of the current ro-
bot through random movements. With the new observations, we used 
them as the training data to continue the training of our existing visual 
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self-model. Figure 8 plots the intermediate model performances on the 
test instance at every 10 epochs. We found that our model required 
50 examples to converge. Our visual self-model can quickly recover with 
the new training data after 100 epochs, which took, on average, 8.13 min 
in the real world on a single GPU.

Another advantage of our visual self-model is its interpretability. 
In Fig. 7B, we can visualize the internal belief of the robot before 
and after the damage adaption. Through these visualizations, we 
can inspect what the robot’s internal belief looks like and whether 
the robot has successfully updated its belief to match the current 
robot morphology. These visualizations can be queried in an online 
fashion with about 2.4 s on a single GPU.

DISCUSSION
We have introduced Neural 3D Visual Self-Model and algorithm 
designs on how to leverage it for 3D motion planning and control 

tasks. We have also constructed a pipeline to demonstrate the resil-
iency of the visual self-model to damage detection, identification, 
and recovery. These innovations make visual self-modeling partic-
ularly useful in real-world robotic applications.

It is important to model the robot morphology in a continuous 
3D domain. In our case, both input spatial coordinates and joint 
angles are continuous. Thus, at inference time, one can query the 
3D information of the robot morphology and kinematics at an arbi-
trary spatial location given any joint angles in a highly memory-
efficient manner where the only storage cost is the weights of the 
network, which is 1.1 megabytes. The queried resolution can also 
vary depending on the precision required for different tasks. Because 
the entire 3D robot morphology is modeled, the task solutions pro-
vided by our visual self-model can always consider relevant body 
part geometries when different parts of the robot interact with the 
environment.

To better model the kinematic structure of the robot, learning 
the kinematic features of the robot together with its 3D morphology 
can be very helpful. Because of the decoupling of the spatial infor-
mation distillation and kinematic information distillation, we can 
obtain a kinematic branch that explicitly learns the robot’s kinematic 
structure. As we have shown in our ablation study, the kinematic 
branch captured precise end effector positions given input joint angles. 
The kinematic branch trained together with the final SDF prediction 
produced more accurate predictions than a specialized network 
trained from scratch for end effector predictions. This suggests the 
importance of explicitly considering the entire robot morphology.

Furthermore, making the entire visual self-model differentiable 
can speed up the planning process. Not only our entire visual self-
model is differentiable, but also the model can be queried at body 
parts instead of the entire body. The differentiability of the model 
allows us to easily perform back-propagation with respect to the 
input joint angles to solve inverse problems. Because the model can 
be queried with only subset of inputs that are of our current inter-
ests depending on the task, we only need to spend computational 
resources and time on the task-relevant components. Both benefits 
make the model super easy and efficient to work with. Last, our 
model can be easily distributed on GPUs. With one single GPU, our 
experiments already achieved highly efficient planning. With more 
computing resources, we expect that our model can reach even faster 
inference speeds.

There are several opportunities to improve our current approach in 
future work. Although our visual self-model executes fast for down-
stream task planning, the training requires about a day to obtain 
high-quality results on a single Nvidia 2080 Ti GPU. For applica-
tions requiring faster convergence, the training time could poten-
tially be reduced by applying meta-learning (20) techniques to get 
better initialization of the neural network weights with a subset of 
the training data. Another possible solution is to use an exploration 
policy (21–24) to select informative data samples over uniform ran-
dom sampling, which may lower the total number of training data 
needed to obtain faster training speed and higher data efficiency.

The second improvement can be noticed from the precision gap 
between the ground truth data from the simulation environment and 
the ground truth data from the real-world scans. As we have dis-
cussed in Results, this gap is caused by imprecise depth data, noisy 
camera calibrations, and super sparse camera views. The current 
real data quality may not handle very fine-grained details. It is pos-
sible to improve the data quality with more dedicated depth sensors 

Fig. 7. Potential change or damage on the robot and visualizations. (A) Two types 
of potential changes. The left scenario is a broken motor where the joint will always 
stay at 90°. In the right scenario, we attached a 3D printed plastic stick. (B) Broken 
motor: We can visualize the robot’s original internal belief, its updated belief 
after continual learning, and the current robot morphology. (C) Extended robot 
link visualizations.
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or more camera views. However, the dedicated 3D scanners often 
cost ten to hundreds of times more than our current solution. In 
our problem formulation, they also suffer from much slower scan-
ning speed, limited scanning range, and human efforts to manually 
posit the scanners around the robot. Another potential solution is 

to use more camera views. Therefore, one may think of using struc-
ture from motion and multiview stereo framework (25, 26) to re-
construct the 3D model of the robot. Although these state-of-the-art 
techniques can provide high-quality 3D reconstructions, in our trial 
on a GPU workstation, they required dozens or even hundreds of 

Fig. 8. Resiliency tests. In the first column, the learned visual self-model can detect the change or damage through the large error gap. In the middle column, the learned 
visual self-model can identify the specific type of change through the mismatch between the input joint values and the inferred joint values. In the last column, we show 
how the visual self-model can update its internal belief to match the current robot morphology. All shaded regions represent the standard error of the mean.
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camera views and hours of processing time to obtain a single scan, 
which makes it difficult to scale these approaches to our problem 
setup. As a comparison, our current pipeline takes a few seconds to 
obtain a complete 3D mesh with only five camera views. The ideal 
solution should be both fast and accurate without too much human 
supervision during the scanning phase. Future progress on hardware 
and software improvements along this direction can substantially 
improve the real-world data quality. Overall, our method opens up 
an opportunity to learn a visual self-model of robots that is 3D 
aware, continuous, memory efficient, differentiable, and kinematic 
aware for fast motion planning and control, with potential to scale 
to other robotic platforms and applications such as locomotion and 
object interaction.

Last, we note that although the results shown in this paper involve 
only geometric and kinematic self-modeling, we speculate that sim-
ilar ideas could be implemented that would enable robots to model 
other self-properties, ranging from mass properties to sensing and 
actuation behaviors. We hypothesize that ultimately, the ability of 
robots to model themselves fully, including both morphology and 
control, will put robots on the path to what could be construed as an 
early form of self-awareness.

MATERIALS AND METHODS
Our visual self-model is consisted of three neural network compo-
nents: a coordinate network, a kinematic network, and a network to 
fuse the coordinate features and kinematic features to produce the 
final SDF. The coordinate network is a single layer of MLP, and the 
kinematic network has four layers of MLPs. The output features 
from these two networks are concatenated along the feature dimen-
sion. The concatenated features are then sent into another four layers 
of MLPs to output the final SDF value. We used sine functions as 
nonlinear activations throughout the entire network to obtain high-
resolution details and initialized the network weights to preserve 
the distributions of the activations. We optimized the network for 
2000 epochs with Adam (27) optimizer, and we implemented the entire 
network with PyTorch (28) and PyTorch Lightning (29) framework. 
Our training used the batch size of 1.536 × 105 and the learning rate 
of 5 × 10−5 on a single NVIDIA RTX 2080 Ti GPU. Both the input 
coordinate and input joint angles were normalized to have zero 
mean and a range of [ −1,1].

We followed previous work to minimize the following loss func-
tion when predicting the SDF value as an Eikonal boundary value 
problem (16)

​​L​ SDF​​  = ​ ∫ 


​ ​​‖∣​∇​ I​​ H(I) ∣− 1‖dI + ​∫ 
​​ 0​​

​ ​​‖H(I) ‖+ 

(1 − ​∇​ I​​ H(I) , n(X)) dI + ​∫ 
\​​ 0​​

​ ​​ (H(I)) dI​	

where I = (X, A) is the concatenation of the input coordinates and 
joint angles, H = F ∘ (C, K) and (I) = exp(− ⋅ ∣H(I)∣).  rep-
resents the whole spatial domain, and 0 denotes the zero-level set. 
In total, there are three terms that sums up together to get the final 
loss. The first term constraints the norm of the spatial gradients of 
the on-surface points to be one. The second and the third terms 
separately encourage the on-surface points and off-surface points 
to follow the definition of zero-level SDF. The on-surface points 
should stay close to zero values and ground truth normals, while the 
off-surface points should not be close to zero SDFs. During training, 

we sampled the same number of points for both on-surface and 
off-surface scenarios for every batch.

SUPPLEMENTARY MATERIALS
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