
Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

1 of 13

A R T I F I C I A L I N T E L L I G E N C E

Fully body visual self-modeling of robot morphologies
Boyuan Chen1*, Robert Kwiatkowski1, Carl Vondrick1,2, Hod Lipson2,3

Internal computational models of physical bodies are fundamental to the ability of robots and animals alike to
plan and control their actions. These “self-models” allow robots to consider outcomes of multiple possible future
actions without trying them out in physical reality. Recent progress in fully data-driven self-modeling has enabled
machines to learn their own forward kinematics directly from task-agnostic interaction data. However, forward
kinematic models can only predict limited aspects of the morphology, such as the position of end effectors or
velocity of joints and masses. A key challenge is to model the entire morphology and kinematics without prior
knowledge of what aspects of the morphology will be relevant to future tasks. Here, we propose that instead of
directly modeling forward kinematics, a more useful form of self-modeling is one that could answer space occupancy
queries, conditioned on the robot’s state. Such query-driven self-models are continuous in the spatial domain,
memory efficient, fully differentiable, and kinematic aware and can be used across a broader range of tasks.
In physical experiments, we demonstrate how a visual self-model is accurate to about 1% of the workspace,
enabling the robot to perform various motion planning and control tasks. Visual self-modeling can also allow the
robot to detect, localize, and recover from real-world damage, leading to improved machine resiliency.

INTRODUCTION
Building computational self-models of robot bodies, or the ability
of a robot to simulate its physical self, is an essential requirement for
robot motion planning and control. Similar to humans and animals
(1, 2), robots can use self-models to anticipate future outcomes of
various motion plans without explicitly trying them out in the physical
world. Predictions obtained using a self-model can be used in
decision criteria of future actions. A consistent self-model, once
acquired, can be repurposed to many different tasks and thus can
serve for lifelong learning.

Most available robotic systems rely on dedicated physical simu-
lators for task planning and control (3–8). However, these simula-
tors require extensive human effort to develop, calibrate, and maintain
over the lifetime of the robot. In contrast, fully data-driven self-
modeling enables machines to learn their forward kinematics directly
in situ using task-agnostic interaction data.

However, data-driven forward kinematic self-models must know
in advance what aspects of the robot need to be modeled, such as the
tilt angle of the robot (9), the position of end effectors (10), the
velocity of motor joints (11), the mirror image of animatronic faces
(12), or the contact locations, as well as joint configurations of robot
grippers (13). The restricted predictive scope of traditional data-
driven self-models limits the general applicability of these self-models
to future, yet unknown, three-dimensional (3D) spatial planning
tasks. For example, a data-driven self-model focusing only on pre-
dicting the position of an end effector may not be useful for tasks
involving operation in a crowded workspace, where full body colli-
sions must be factored into the planning. Making sure that the
entire robot arm motion will be collision free is a critical aspect for
numerous safe robot operations such as object retrieval, trajectory
planning, and human-robot interaction. Data-driven modeling the
entire robot morphology and kinematics, without prior knowledge

of what aspects of the morphology are relevant to future tasks, has
remained a major challenge.

Here, we present a full-body visual self-modeling approach
(Fig. 1 and Movie 1) that captures the entire robot morphology and
kinematics using a single implicit neural representation. Rather
than predicting positions and velocities of prespecified robot parts,
this implicit system is able to answer space occupancy queries given
the current state (pose) or the possible future states of the robot. For
example, the query-driven visual self-model can answer queries as
to whether a spatial position (x, y, z) will be occupied if the joints
move to some specified angles. Because both the spatial and robot
state inputs are real values, our visual self-model allows continuous
queries in the domain of both control signals and spatial locations.
Furthermore, the learning process only requires joint angles and
sparse multiview depth images, which enables generalizable and
scalable data acquisition without human supervision.

Once learned, the responses from this single visual self-model to
a series of queries can then be used for a variety of 3D motion
planning and control tasks, although the self-model was only trained
with task-agnostic random motor movements. Because of our fully
differentiable parametrization, the robot can directly perform effi-
cient parallel gradient-based optimization on top of the self-model
to search for the best plans in real time. We can also combine the
self-model in a seamless manner with existing motion planning

1Department of Computer Science, Columbia University, New York, NY, USA. 2Data
Science Institute, Columbia University, New York, NY, USA. 3Department of Mechanical
Engineering, Columbia University, New York, NY, USA.
*Corresponding author. Email: bchen@cs.columbia.edu

Copyright © 2022
The Authors, some
rights reserved;
exclusive licensee
American Association
for the Advancement
of Science. No claim
to original U.S.
Government Works

Movie 1. Overview of full-body visual self-modeling of robot morphologies.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

mailto:bchen@cs.columbia.edu
https://players.brightcove.net/53038991001/default_default/index.html?videoId=6309415899112

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

2 of 13

techniques. Moreover, when the robot sustains physical damage,
such as a broken motor or changed morphology, our self-model
can detect, identify, and recover from these changes. Because our
self-model is inherently visual, it can provide a real-time human-
interpretable visualization of the robot’s internal belief of its current
3D morphology and state. This ability to sense pose-conditioned
space occupancy is perhaps not unlike our natural human ability to
“see in our mind’s eye” whether our body could fit through a narrow
passage, without actually trying it out in reality (14).

Implicit visual self-model representation
Robots operate in a 3D world, and therefore, being morphologically
and kinematically aware in 3D space is essential for them to success-
fully interact with the physical environments and adapt to potential
changes in the field. Traditionally, robot engineers build a physical
simulator and integrate it with computer-aided design (CAD) models
of the robot. However, designing a simulation environment is not
trivial. Accurate CAD models that reflect the real as-built robot
geometry may not be easily available, especially for robots that have
been modified because of damage, adaptation, wear, and repair.
This challenge will likely become more acute as the variety and
complexity of robotic systems continue to increase in the future and
especially as robots must operate with less human supervision,
maintenance, and oversight.

We therefore aim to learn the self-model of robots directly
through task-agnostic data with minimal human supervision or
domain knowledge. Our goal is to learn a visual self-model that can
capture the entire body morphology and kinematics without prior
knowledge of the body configurations such as joint placements, part
geometry, motor axis, and joint types. With the visual self-model, a
robot should be able to plan its future actions by rolling out the
self-model before executing any actions in the physical world. We

can also visualize its final plan from
different viewing angles because the
model itself is 3D.

There are two major challenges when
designing a visual self-modeling pro-
cess. First, we need to carefully decide
how to represent the 3D geometry of
the robot body. Most existing 3D repre-
sentations are explicit, such as point
cloud, tessellated triangle meshes, or
voxelized occupancy grids. However,
such approaches come with several
limitations. Point clouds, meshes, and
grids often consume large amounts of
memory to store even a single geometry,
let alone a kinetic geometry dependent
on input degree of freedom (DoF).
Point clouds also lose structural con-
nectivity, although voxel representations
lose continuous resolutions. These limita-
tions are amplified in kinematic tasks
because the self-models are expected to
be dependent on trajectories of multi-
ple DoFs of the robot.

The second challenge concerns the
computational efficiency of leveraging
the learned visual self-model for down-

stream task planning. Once a visual self-model is formed, we hope
that the same model can be used for many tasks. In other words, the
model must be task agnostic. Furthermore, real-time planning and
control is critical for many robotic applications. Therefore, the ideal
representation should render the 3D model in a parallel and
memory-efficient manner using graphics processing unit (GPU)
hardware. The model should also provide fast inference capability
to solve common inverse problems in robotics, such as inverse ki-
nematics. Last, not every component of the robot body weighs
equally in all tasks, so it should be possible to query different spatial
components of the visual self-model as needed. For example, the
full 3D knowledge of the robot base and 3D geometry of other arm
components are not required when calculating the inverse kinematic
solution of a robot arm trying to reach a 3D object with its end
effector.

We overcame the above challenges by proposing a state condi-
tioned implicit visual self-model that is continuous, memory effi-
cient, differentiable, and kinematic aware. The key idea is that the
model does not simply predict future robot states explicitly; instead,
it is able to answer spatial and kinematic queries about the geometry
of the robot under various future states.

To construct a query-answering self-model, we leverage implicit
neural representations to model the 3D body of the robot as shown
in Fig. 2. Given a spatial query point coordinate X ∈ ℝ3 normalized
on the basis of scene boundary and a robot joint state vector A ∈ ℝN
specifying all the N joint angles, the visual self-model can be repre-
sented by a neural network to produce the zero-level set signed dis-
tance function (SDF) of the robot body at the given query point X.

We use SDF as a representation of 3D shapes (15). An SDF is a
continuous field in which each point is associated with a magnitude
value representing its closest distance to a surface and a sign (−or+)
indicating if the point is inside or outside the surface boundary.

Fig. 1. Visual self-modeling robots. We equip the robot with the ability to model its entire morphology and kine-
matics in 3D space only given joint angles, known as visual self-model. With the visual self-model, the robot can
perform variety of motion planning and control tasks by simulating the potential interactions between itself and the
3D world. Our visual self-model is continuous, memory efficient, differentiable, and kinematic aware.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

3 of 13

Through this network, the robot morphology is represented as the
zero-level isosurface of the function. Please refer to the Supplemen-
tary Materials for more background information about the SDF
representation.

Formally, the model can be expressed as

 SDF = {X ∈ ℝ 3 , A ∈ ℝ N ∣F(C(X) , K(A)) }

where C is the coordinate neural network with several layers of mul-
tilayer perceptrons (MLPs) to encode the spatial coordinate fea-
tures, K is the kinematic neural network with several layers of MLPs
to encode the robot kinematic features, and F is the last few layers of
MLPs to fuse the features from both the coordinate network C and
kinematic network K after concatenating their outputs to produce
the final SDF values conditioned on the queried spatial coordinates
and current joint angles. We omit the batch size here for simplicity.
For nonlinear activation functions, we used sine functions to pre-
serve the details on the 3D models (16).

We trained the network by formulating the problem as an
Eikonal boundary value problem. Instead of supervising the network
with the ground-truth SDF, similar to Sinusoidal Representation
Networks (SIREN) (16), we directly used point clouds and surface
normals obtained by fusing observations from sparse RGB-D camera
views as labels, as indicated in Fig. 2. In both simulation and real-
world setup, we used five RGB-D cameras to capture pairs of data
for training, namely, the joint angles and the fused point cloud. During
testing, the only available robot-related information to our visual
self-model is a set of joint angles. More details of the network archi-
tectures and loss functions are discussed in Materials and Methods.

Overall, our visual self-model is formed by several layers of
MLPs that implicitly capture the entire morphology and kinematics
of the robot body. We implemented the network with differentiable
deep learning framework so that it can be easily deployed on GPUs
with end-to-end differentiable capabilities. Although the entire
self-model only consumes 1.1 megabytes to store its weights, our
visual self-model can represent the 3D morphology of the robot
body with different kinds of joint angles at various continuous
spatial locations. By separating the kinematic feature encoder and
coordinate feature encoder into two subnetworks, each subnetwork

captures independent semantic meaning. As we will show next, this
property allows the self-model to learn rich kinematic features use-
ful for downstream tasks.

3D self-aware motion planning
We aim to use the learned visual self-model in various motion planning
tasks in 3D space. In this section, we will present algorithm designs
to show the used cases for three sample tasks (Fig. 3). However, our
model is not limited by only those three tasks. Rather, we use them
as representative examples for demonstration purposes, and we
expect that the model can generalize to other possible tasks.

1) Touch a 3D sphere with any part of the robot body. The goal
of this task is to touch a 4-cm-diameter sphere using any part of the
robot body. To solve this problem, the robot needs to calculate
inverse kinematics in 3D without constraints on which specific body
piece touches the target object.

2) Touch a 3D sphere with end effector. This task not only re-
quires the robot to touch a target sphere but also asks the robot to
touch it with the end effector link. This is a harder task because the
robot needs to solve inverse kinematics in 3D with a particular link
constraint. The solution space is quickly reduced.

3) Touch a 3D sphere with end effector while avoiding an obsta-
cle. In this task, we ask the robot to go beyond computing a target
end state with or without link constraints. Instead, to succeed at this
task, the robot needs to perform precise motion planning in 3D to
touch the final target while avoiding a large obstacle shown as red
block in Fig. 3. Overall, the robot is tasked to propose an entire safe
trajectory from its initial state to the target state. During the execu-
tion of the proposed trajectory, the robot will fail the task if any part
of the robot body collides with the obstacle.

To solve these motion planning tasks, one immediate thought is
to obtain the entire robot body meshes and load them into existing
robot simulators. This can be done by traversing all possible spatial
points under certain precision and different sets of joint angles
through the implicit neural representation and rendering the entire
3D robot mesh with postprocessing algorithms (17). Such usage of
the visual self-model seems to be a straightforward solution to
bypass the need to construct robot kinematic and geometric models
such as CAD and Unified Robotics Description Format files.

Fig. 2. Implicit visual self-model representation. (A) Real-world setup for data collection. We fused sparse views from five depth cameras to capture the point cloud of
the robot body. As the robot arm randomly moved around, we recorded pairs of the robot joint angles and its 3D point cloud. See movie S1 for real-time data collection.
(B) The computational diagram of our visual self-model. The coordinate network takes in the spatial coordinate, and the kinematic network extracts kinematic features
from the input joint angles. We then concatenated the spatial features and the kinematic features into a few layers of MLPs to output the zero-level set SDF values. The
implicit representation can be queried at arbitrary continuous 3D spatial coordinates and different sets of joint angles.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

4 of 13

However, in practice, we found that constantly loading new robot
meshes and destroying old robot meshes in commonly available
robot simulators cost a substantial amount of time. This limits the
possibility of applying this method for real-time planning and
control.

We propose to frame the first two tasks as constrained optimiza-
tion problems by leveraging the differentiability of the visual
self-model and its capability of answering partial queries on spatial
coordinates. Specifically, for the first task, we initialize thousands of
sets of joint angles. We then sample P points uniformly on the
surface of the target object. Because the output of the visual
self-model will be zero when the queried spatial point is on the sur-
face, the overall objective is to find the set of joint angles that can
minimize the total sum of output values across all the sampled
points on the target object. By freezing the weights of the learned
visual self-model, we can perform gradient descent from the output
surface predictions with respect to the input joint angles, under
the constraint that the motor angles have to be within the range of
[−, +].

Formally, the constrained optimization problem can be ex-
pressed as

 A * = min 𝔼 A b [Σ T p F(C(T p) , K(A b))] , s . t . − ≤ A i
b ≤ , i = 1, 2, 3, 4

where T ∈ ℝP × 3 is the sampled points on the target object, i is the
motor index, and b = 1,2, …, B is the index of each sampled set of
joint angles with the maximum value B to be the batch size on a
single GPU. Because the visual self-model runs parallelly on a GPU
with small consumption of memories, the entire optimization pro-
cess can produce accurate solutions within a short period of time.
With more GPUs, the process can be further sped up.

To solve the second task, we need additional information about
where the end effector locates relative to the entire robot body.
Because the current visual self-model was only trained to capture
the overall body geometries, similar to other works in self modeling,
we can supervise the visual self-model to predict the end effector
location at the same time. The good news is that our visual self-model
already has a specialized subnetwork that implicitly captures the
robot kinematics. Therefore, we can directly use the pretrained
weights of the kinematic subnetwork and train only two nonlinear
layers of MLPs E attached to the end of the subnetwork with little

additional efforts. As we will show in Results, our visual self-model
provides a strong semantic proxy to pretrain the kinematic sub-
network, leading to superior performance than training a specialized
network to predict the end effector position from scratch. Without
our decomposition formulation of kinematic subnetwork, the
acquired kinematic information may not be easily distilled as an
independent feature for future use.

Similar to the first task, we now can formalize the solution of the
second task by adding another objective function to make sure the
resulted end effector reaches the target object. The overall optimiza-
tion problem can be formalized as follows

 A * = min 𝔼 A b [Σ T p EE E(K(A b)) + SDF F(C(T p) , K(A b))] , s . t . − ≤
 A i

b ≤ , i = 1, 2, 3, 4

As discussed above, the objective function includes two terms
weighted by hyperparameters EE and SDF. The first term ensures
that the end effector touches the target object, and the second term
encourages the robot body to touch the target object. We found that
adding a small SDF consistently achieves better results.

Regarding the third task, our visual self-model can directly work
with existing motion planning algorithms with minimal changes.
There has been great success (18) on motion planning algorithms to
solve obstacle avoidance problem in high-dimensional state and
action spaces. We thus combine our visual self-model with the
existing algorithms in a plug-and-play manner. Specifically, we use
RRT* (19) as our backbone algorithm due to its popularity, proba-
bilistic completeness, and computational efficiency. Generally speak-
ing, there are two major components in RRT* that require physical
inference with robot bodies: The first component is to calculate the
goal state, and the second component is to check whether a collision
will happen given a particular state of the robot. With these two
components, various planning algorithms can narrow the search
space to the final solution without having to explicitly query robot
status again.

Traditionally, these two components require a dedicated robot
simulator and predefined robot bodies. With our visual self-model,
we can reach the final solution by simply performing fast parallel
inference on the learned model. Specifically, the goal state can be
obtained by running the same optimization procedure as in the
second task. For collision detection, we can pass uniformly sampled

Fig. 3. 3D self-aware motion planning tasks. We present an overview of three different tasks. “Touch 3D sphere with any part of the robot body” asks the robot to
generate a set of target joint angles such that some part of the robot body needs to be in contact with a randomly placed target sphere. “Touch a 3D sphere with end
effector” requires the robot to generate a set of target joint angles such that the robot needs to touch a randomly placed target sphere with its end effector link. “Touch
a 3D sphere with end effector while avoiding obstacle” tasks the robot to propose an entire set of collision-free trajectories in the form of intermediate joint angles to
touch a randomly placed target sphere using its end effector. The three tasks gradually become harder with more constraints.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

5 of 13

points on the obstacle surface and the given set of joint angles Aquery
through our visual self-model as shown below. If the total sum of
the output values over all the sampled points is equal to or below a
small threshold , then there is a collision. Otherwise, the robot will
not collide with the obstacle object

 Collision = {
True, Σ O i F(C(O i) , K(A query)) ≤ ;

False, Σ O i F(C(O i) , K(A query)) > ;

Damage identification and recovery
One major promise of machines that can model or identify them-
selves is the capability of recognizing and inspecting damage or
changes and then quickly adapting to these changes. In this section,
we present our method to identify and recover from damage using
the learned visual self-model.

Our approach involves three steps. The robot first detects a dam-
age or change on its body compared to its original (intact) geome-
try. Then, the robot can identify which specific type of damage or
change is happening. Last, the robot will gather new information
about itself with limited data and computational resources to quick-
ly adapt its self-model to the new changes.

Overall, our approach introduces several substantial advantages
over previous methods. First, being able to recognize the specific
type of damage or change enables the robot to provide additional
feedback information. Previous works have shown that it was pos-
sible to detect damage. However, they were not able to provide ad-
ditional information to identify the source of the change or which
specific type of damage has happened. This information is extremely
helpful when the damage requires hardware repair. Instead of relying
on a domain expert to perform a series of inspections, our method
can automatically generate information about specific damage, such
as “the second joint motor is broken.”

Another advantage is that our approach performs modeling in
the 3D visual world. This means that we can visualize and render
the internal belief of the visual self-model in a straightforward and
interactive fashion. As we will show in the results, one can immedi-
ately tell which section of the internal belief of the robot body does
not match the real-world counterpart. We can further tell visually if
the internal belief has been updated to match the new changes after
learning from new observations.

In the following sections, we begin by describing the specific algo-
rithms, and then we follow with real-world results in the next section. In
the first step, we measure the current prediction error and the original
prediction error. The current prediction error is computed by compar-
ing the internal belief expressed by the learned visual self-model with
the current observed 3D mesh of the robot, whereas the original predic-
tion error is computed by comparing the same internal belief with the
previously observed 3D robot body. Both cases share the same joint
conditions. By comparing these two prediction errors, a large gap can
inform us about a notable change or damage to the robot body.

In the second step, we aim to identify the specific type of damage
happening on the robot. On the basis of the robot arm platform we
are experimenting with, we assume two types of potential changes:
broken motor and changed topology.

To reveal which specific type of the current damage is, our key idea
is to solve the inverse problem with the learned visual self-model. Con-
cretely, on the basis of a single current observation of the robot body,
we infer the best joint angles that the robot should have executed to

result to the current 3D observation. This is a very challenging prob-
lem because an ideal joint angle set needs to give accurate 3D recon-
struction of the entire robot body. Relying on previous gradient-based
optimization algorithm is inefficient because the final gradient com-
putation requires the sum over all the sampled points on the whole
robot body. This process takes a large amount of memory and com-
putation resources to perform a single gradient step due to the large
volume of the robot mesh. Instead, we propose to use random search
to locate the best possible joint angles. The simple random search
algorithm works very well in this case. It does not require the accumu-
lation of any gradient information so that larger batch of queries
can fit on a single forward pass of visual self-model.

With the inferred joint angles, we can quantify the damage by
comparing them with the actual input motor commands. If a specific
inferred joint angle is always different from the actual input and that
particular inferred angle always stays as a constant value or some
other random values, then we can tell that the corresponding motor
is broken. When all the inferred joint angles match closely to the
actual input commands, the wrong belief of the 3D body then comes
from a topology change, and all the motors function well. We leave
the research where both changes happen at the same time or more
complex changes as future directions.

Last, we also evaluate whether our visual self-model can quickly
recover from the changes by adapting on several new observations.
For this step, the main purpose is to demonstrate the resiliency
of the model, rather than proposing a new algorithm for continual
adaption. Therefore, we follow common approaches by collecting a
few more 3D observations after the changes to keep training the
network for several epochs. We then check whether the new visual
self-model can successfully update its internal belief to match the
current robot body both quantitatively and qualitatively.

RESULTS
Visual self-model estimation
We used the WidowX 200 Robot Arm as our experimental platform
both in simulation and real-world. To obtain the ground truth point
cloud data, we mounted five RealSense D435i RGB-D cameras
around the robot as shown in Fig. 2A. Four cameras were around
each side of the robot to capture side views. One camera was on the
top to capture the top-down view. All cameras were calibrated. The
depth images were first projected to point clouds, which were then
fused into a single point cloud based on the camera extrinsic param-
eters. The final point cloud was generated by clipping the scene with
a predefined scene boundary.

During data collection, we randomly moved the robot arms to
get pairs of joint values and its corresponding point cloud. For each
pair of data, the simulation needed less than 1 s, and the real-world
collection took around 8 s. In total, we collected 10,000 data points
in simulation with PyBullet (6) and 7888 data points in the physical
setup. We partitioned the data into training set (90%), validation set
(5%), and testing set (5%).

To evaluate the prediction accuracy, we ran several forward pass-
es on the learned visual self-model to obtain the whole-body mesh of
the robot on the testing set. On a single GPU (NVIDIA RTX 2080Ti),
this process took about 2.4 s. Following previous works on implicit
neural representations of 3D models (15, 16), we calculated the
Chamfer-L1 distance between the predicted mesh and the ground
truth mesh as our metric. All units in our paper are in meters.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

6 of 13

In simulation, the point cloud fusion was nearly perfect due to
noiseless depth image and exact camera calibrations. In the real-
world experiments, we noticed that the point cloud fusion was very
noisy due to imprecise depth information introduced by internal
sensor errors, noisy camera calibrations, and very sparse viewpoints.
We did not increase the number of views because the current ground
truth scan can already reflect the overall pose of the robot, so we tested
the fidelity of our algorithm directly on the noisy real-world data in

exchange of adding more resources and time cost. The gap of the
ground truth data quality between the simulation and real world sug-
gests that the final results in the real-world setup can be greatly im-
proved with better future 3D scanning techniques.

Figure 4B visualizes pairs of predicted meshes and the ground
truth meshes. In both simulation and real-world cases, our learned
visual self-model produced accurate estimations of the robot mor-
phology and kinematics, given only unseen joint angles as input.

Fig. 4. Visual self-model predictions. (A) Quantitative evaluations of our visual self-model predictions in both simulated and noisy real-world environments. Our visual
self-model outperforms nearest neighbor and random baselines, suggesting that the visual self-model learns a generalizable representation of the robot morphology
beyond the training samples. (B) With simulated training data, our visual self-model can produce high-quality 3D body predictions given a diverse set of unseen joint
angles. (C) When the training data becomes highly noisy in the real world due to imprecise depth information, noisy camera calibrations, and super sparse viewpoints,
our visual self-model can still accurately match the ground truth to reflect the overall robot body morphology and kinematics. See movies S3 and S4 for more examples.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

7 of 13

We also compared our algorithm with a random search baseline and
a nearest neighbor baseline. For the random search, we randomly
selected a robot mesh from the training set as the prediction. For the
nearest neighbor baseline, we compared the testing joint angles with
all the joint angles in the training set using L2 distance metric and
then used the robot mesh corresponding to the closest joint angles
as the final prediction.

We presented the quantitative results in Fig. 4A. Our method
reached around 0.002- and 0.0102-m Chamfer-L1 distance in simu-
lated and real-world experiments, respectively. Our self-model out-
performed both baselines, suggesting that our visual self-model learns
the generalizable correspondence between the joint angles and the
robot morphology, as well as kinematics, rather than memorizing
the training set distribution. Because the workspace of the physical
robot is around 0.9 m by 0.9 m by 0.9 m, our visual self-model is
accurate to about 1% of the workspace calculated as 0.0102/0.9 ≈ 1.1%.

In addition to the predictions on individual set of joint angles, we
also visualize the predictions over joint angle trajectories by linearly
interpolating between sets of starting joint angles and sets of target
joint angles. Both the starting and target joint angles are randomly

sampled. As shown in Fig. 5, our visual self-model can generate
smooth interpolations of robot morphologies between small changes
of joint angles. As we will show next, this property allows our visual
self-model to generate accurate trajectories for downstream motion
planning tasks.

3D self-aware motion planning
In this subsection, we aim to evaluate the performance of using our
visual self-model and 3D self-aware motion planning algorithms for
three representative downstream tasks: touch a 3D sphere with any
part of the robot body, touch a 3D sphere with end effector, and touch
a 3D sphere with end effector while avoiding an obstacle. Detailed
illustrations of the tasks and algorithms have been discussed above.
For all three tasks, we present qualitative visualizations of our solu-
tions obtained through the visual self-model in the real-world sys-
tem in Fig. 6. We then introduce our quantitative evaluation results
in the simulation setup.

For the “touch a 3D sphere with any part of the body” task, our
evaluation metric measures the Euclidean distance of the closest
points between the robot surface and the target object surface. We

Fig. 5. Interpolation between joint angles. We demonstrate that our learned visual self-model can smoothly interpolate between different joint angles. (A) Results
trained in simulation. (B) Results trained on real-world data. See movie S5 for more examples.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

8 of 13

sampled 100 tasks where the target sphere was placed at different
3D locations within the reachable space of the robot. If the robot
was already in contact with the target sphere at initialization, we
discarded that task and resampled another task. Our results are
shown in the table S1. We compared our visual self-model with several
other baselines. To reflect the task difficulty, we first measured the
initial distance between the robot surface body at its home location
and all sampled target sphere surfaces. We also compared it with a
random trial baseline where the only input was also the joint angles,

similarly to our visual self-model. In this case, the robot randomly
selected a set of joint angles as its final solution. This baseline gave
an even worse performance than initial distance, indicating that the
robot needs to perform careful inverse kinematic calculation with
considerations of its entire morphology and kinematics. Overall,
our method produces much more accurate solutions. Furthermore,
our method was also time efficient during the search stage. Each
solution took 2.92 s, on average, on a single GPU after 500 optimi-
zation iterations. Note that the solutions generated in this sample

Fig. 6. 3D self-aware motion planning results. (A) For each of the three tasks, we show the real-world demos by executing the proposed plans from our visual self-model.
See movie S6 for more examples. (B) We found that our visual self-model enables the kinematic network to gain better generalization performance on downstream tasks
than a plain kinematic self-model trained from scratch. The standard error of the mean of the distance error is represented by the shaded region.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

9 of 13

application satisfy the constraints but are not necessarily optimal.
Additional optimization criteria such as energy or peak speed mini-
mization could be added, and many established path planning tech-
niques could be used. We leave such explorations for future work.

For the “touch a 3D sphere with end effector task,” our evalua-
tion metric measures the Euclidean distance between the end effector
link and the closest point on the target sphere surface. We sampled
100 tasks and made sure that the robot was not in contact with the
target sphere at its home configuration. Our results are shown in
table S2. Similar to the first task, we compared our approach with
the initial distance and random trial baselines. Both baselines were
poor at this task with about 36- to 37-cm errors. This is even worse
than the first task because the presented task requires more accurate
solutions to consider both the 3D body geometry and the end effec-
tor position.

We have hypothesized that our visual self-model encourages
strong semantic knowledge of robot kinematics in the kinematic sub-
network. To verify this hypothesis, we reused the pretrained weights
of the kinematic subnetwork and appended two nonlinear layers of
MLPs to perform further training only on the newly added layers, to
regress the end effector link position. The quantity of the data and the
strategy of data splits followed the same definition with our original
visual self-model. The test error was around 0.5 cm. We also trained a
network with the exact same architecture without pretrained weights
from our visual self-model to predict the end effector position. The
test error of this model was 1.3 cm, which was nearly three times higher.
Moreover, when applying these two models separately with our
motion planning pipeline in table S2, our method reached nearly
10 times higher accuracy than the model trained from scratch denot-
ed as “end-effector prediction” in the table. These results suggest the
importance of considering the kinematic structure of the robot
together with its 3D morphology. In terms of time efficiency, our
method took 4.93 s, on average, on a single GPU after 500 optimiza-
tion iterations because of the fast parallel inference property.

Furthermore, we found that learning the kinematic structure,
together with our visual self-model to learn the entire robot mor-
phology, brought stronger generalization capability to downstream
tasks. In Fig. 6B, every dot represents a task sample. The y axis indi-
cates the error measurements on the task of “touch a 3D sphere with
end effector,” and the x axis denotes the closest distance between
each sampled task and their nearest neighbor in the training set.
Larger values on the x axis mean that the sampled task is farther
away from the training data distribution. Therefore, the errors of
the method with strong generalization capability should not in-
crease with the increased distance from the training data distribu-
tion. We thus also plotted a linear regression model fit in the same
figure. By comparing our visual self-model denoted as red dots and
the model trained from scratch indicated as blue dots, we can tell
that our visual self-model obtains a much stronger generalization
capability, whereas the model trained from scratch will have a much
higher error when the data are away from the training set.

Last, we also provide results of using different values of link and
SDF in the objective function. We found that link = 0.8 and SDF = 0.2
give the best results. Therefore, adding a small regularization with the
original SDF objective can help achieve better performance in this task.

For the “touch a 3D sphere with end effector while avoiding
obstacle” task, because the target joint states are generated and eval-
uated through the above task, we are now interested in evaluating
the capability of generating collision-free trajectory when combing

existing motion planners with our visual self-model as collision pre-
diction function. Again, we sampled 100 tasks with initial states be-
ing contact free with the robot body. We placed a block of 40 cm
above the robot base as the obstacle object. The block has a dimen-
sion of 20 cm by 20 cm 20 cm. In total, after running the motion
planner with our visual self-model, we received 95 of 100 trajecto-
ries that the model believes that no collision will happen along each
trajectory. We then executed these trajectories and found that 92 of
the 95 trajectories successfully passed around the obstacle toward
the target object without any collision. This is a 96.84% success rate
over all the output trajectories. Our method took 7.43 s, on average,
to produce an entire trajectory, which includes the time for both
inferring the target state as presented in the second task and run-
ning the motion planners. This fast inference time enables our
method to provide real-time planning and control solutions.

Resiliency tests
Being able to identify potential damages or changes to the robot body
and quickly recover from these changes is a critical capability of intel-
ligent machines in the real world. We made two types of changes to the
robot body as depicted by Fig. 7A. In the first change, we broke the
second motor to the end effector link by disconnecting the data trans-
fer cable from the motor, which resulted in the corresponding joint
always staying at 90°. Motor breakage can happen because of various
reasons such as loosening cables, overheating, or hardware damage,
but the common observation is that the motor does not respond to any
commands. The second change applies to the topology change of the
end effector link. We attached a 3D printed plastic stick to the end
effector so that the reachable space of the robot arm was extended.
This is also a representative change in practical applications when dif-
ferent tasks demand new attachments of tools to the robot body or
when switching different grippers on a robot arm.

With our proposed algorithm and the learned visual self-model,
we tested the applicability of our method directly on these real-
world changes. Figure 8 presents several example results. The first
step is to detect the change. As shown in the first column, our algo-
rithm detected a clear gap between the original prediction errors and
the current prediction errors. The obvious gaps suggest that our visual
self-model can capture the changes happening on the robot body.

The second step is to identify the specific type of change. In the
first two examples, no matter what the input commands were to the
robot, the second last joint was always inferred to be around 90° by
solving the inverse problem with the newly observed morphology.
This consistent mismatch indicates that the second last motor was
broken and the angle stayed at 90°. In the last two examples, al-
though we can detect that there were some changes from the first
step, the inferred joint angles were still well aligned with the input
commands. Following our discussions earlier, our algorithm identi-
fied that there was a topology change on the robot body. Our results
suggest that our visual self-model can be used to effectively solve
inverse problems to help identify what body change or damage
might have taken place. Our approach only requires a single 3D ob-
servation of the current robot to produce the above results to detect
and further identify the damage.

In the final step, our goal is to evaluate whether our visual self-model
can quickly recover from the detected changes with only a few new ob-
servations. We first collected a few more observations of the current ro-
bot through random movements. With the new observations, we used
them as the training data to continue the training of our existing visual

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

10 of 13

self-model. Figure 8 plots the intermediate model performances on the
test instance at every 10 epochs. We found that our model required
50 examples to converge. Our visual self-model can quickly recover with
the new training data after 100 epochs, which took, on average, 8.13 min
in the real world on a single GPU.

Another advantage of our visual self-model is its interpretability.
In Fig. 7B, we can visualize the internal belief of the robot before
and after the damage adaption. Through these visualizations, we
can inspect what the robot’s internal belief looks like and whether
the robot has successfully updated its belief to match the current
robot morphology. These visualizations can be queried in an online
fashion with about 2.4 s on a single GPU.

DISCUSSION
We have introduced Neural 3D Visual Self-Model and algorithm
designs on how to leverage it for 3D motion planning and control

tasks. We have also constructed a pipeline to demonstrate the resil-
iency of the visual self-model to damage detection, identification,
and recovery. These innovations make visual self-modeling partic-
ularly useful in real-world robotic applications.

It is important to model the robot morphology in a continuous
3D domain. In our case, both input spatial coordinates and joint
angles are continuous. Thus, at inference time, one can query the
3D information of the robot morphology and kinematics at an arbi-
trary spatial location given any joint angles in a highly memory-
efficient manner where the only storage cost is the weights of the
network, which is 1.1 megabytes. The queried resolution can also
vary depending on the precision required for different tasks. Because
the entire 3D robot morphology is modeled, the task solutions pro-
vided by our visual self-model can always consider relevant body
part geometries when different parts of the robot interact with the
environment.

To better model the kinematic structure of the robot, learning
the kinematic features of the robot together with its 3D morphology
can be very helpful. Because of the decoupling of the spatial infor-
mation distillation and kinematic information distillation, we can
obtain a kinematic branch that explicitly learns the robot’s kinematic
structure. As we have shown in our ablation study, the kinematic
branch captured precise end effector positions given input joint angles.
The kinematic branch trained together with the final SDF prediction
produced more accurate predictions than a specialized network
trained from scratch for end effector predictions. This suggests the
importance of explicitly considering the entire robot morphology.

Furthermore, making the entire visual self-model differentiable
can speed up the planning process. Not only our entire visual self-
model is differentiable, but also the model can be queried at body
parts instead of the entire body. The differentiability of the model
allows us to easily perform back-propagation with respect to the
input joint angles to solve inverse problems. Because the model can
be queried with only subset of inputs that are of our current inter-
ests depending on the task, we only need to spend computational
resources and time on the task-relevant components. Both benefits
make the model super easy and efficient to work with. Last, our
model can be easily distributed on GPUs. With one single GPU, our
experiments already achieved highly efficient planning. With more
computing resources, we expect that our model can reach even faster
inference speeds.

There are several opportunities to improve our current approach in
future work. Although our visual self-model executes fast for down-
stream task planning, the training requires about a day to obtain
high-quality results on a single Nvidia 2080 Ti GPU. For applica-
tions requiring faster convergence, the training time could poten-
tially be reduced by applying meta-learning (20) techniques to get
better initialization of the neural network weights with a subset of
the training data. Another possible solution is to use an exploration
policy (21–24) to select informative data samples over uniform ran-
dom sampling, which may lower the total number of training data
needed to obtain faster training speed and higher data efficiency.

The second improvement can be noticed from the precision gap
between the ground truth data from the simulation environment and
the ground truth data from the real-world scans. As we have dis-
cussed in Results, this gap is caused by imprecise depth data, noisy
camera calibrations, and super sparse camera views. The current
real data quality may not handle very fine-grained details. It is pos-
sible to improve the data quality with more dedicated depth sensors

Fig. 7. Potential change or damage on the robot and visualizations. (A) Two types
of potential changes. The left scenario is a broken motor where the joint will always
stay at 90°. In the right scenario, we attached a 3D printed plastic stick. (B) Broken
motor: We can visualize the robot’s original internal belief, its updated belief
after continual learning, and the current robot morphology. (C) Extended robot
link visualizations.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

11 of 13

or more camera views. However, the dedicated 3D scanners often
cost ten to hundreds of times more than our current solution. In
our problem formulation, they also suffer from much slower scan-
ning speed, limited scanning range, and human efforts to manually
posit the scanners around the robot. Another potential solution is

to use more camera views. Therefore, one may think of using struc-
ture from motion and multiview stereo framework (25, 26) to re-
construct the 3D model of the robot. Although these state-of-the-art
techniques can provide high-quality 3D reconstructions, in our trial
on a GPU workstation, they required dozens or even hundreds of

Fig. 8. Resiliency tests. In the first column, the learned visual self-model can detect the change or damage through the large error gap. In the middle column, the learned
visual self-model can identify the specific type of change through the mismatch between the input joint values and the inferred joint values. In the last column, we show
how the visual self-model can update its internal belief to match the current robot morphology. All shaded regions represent the standard error of the mean.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

12 of 13

camera views and hours of processing time to obtain a single scan,
which makes it difficult to scale these approaches to our problem
setup. As a comparison, our current pipeline takes a few seconds to
obtain a complete 3D mesh with only five camera views. The ideal
solution should be both fast and accurate without too much human
supervision during the scanning phase. Future progress on hardware
and software improvements along this direction can substantially
improve the real-world data quality. Overall, our method opens up
an opportunity to learn a visual self-model of robots that is 3D
aware, continuous, memory efficient, differentiable, and kinematic
aware for fast motion planning and control, with potential to scale
to other robotic platforms and applications such as locomotion and
object interaction.

Last, we note that although the results shown in this paper involve
only geometric and kinematic self-modeling, we speculate that sim-
ilar ideas could be implemented that would enable robots to model
other self-properties, ranging from mass properties to sensing and
actuation behaviors. We hypothesize that ultimately, the ability of
robots to model themselves fully, including both morphology and
control, will put robots on the path to what could be construed as an
early form of self-awareness.

MATERIALS AND METHODS
Our visual self-model is consisted of three neural network compo-
nents: a coordinate network, a kinematic network, and a network to
fuse the coordinate features and kinematic features to produce the
final SDF. The coordinate network is a single layer of MLP, and the
kinematic network has four layers of MLPs. The output features
from these two networks are concatenated along the feature dimen-
sion. The concatenated features are then sent into another four layers
of MLPs to output the final SDF value. We used sine functions as
nonlinear activations throughout the entire network to obtain high-
resolution details and initialized the network weights to preserve
the distributions of the activations. We optimized the network for
2000 epochs with Adam (27) optimizer, and we implemented the entire
network with PyTorch (28) and PyTorch Lightning (29) framework.
Our training used the batch size of 1.536 × 105 and the learning rate
of 5 × 10−5 on a single NVIDIA RTX 2080 Ti GPU. Both the input
coordinate and input joint angles were normalized to have zero
mean and a range of [−1,1].

We followed previous work to minimize the following loss func-
tion when predicting the SDF value as an Eikonal boundary value
problem (16)

 L SDF = ∫

 ‖∣ ∇ I H(I) ∣− 1‖dI + ∫
 0

 ‖H(I) ‖+

(1 − ∇ I H(I) , n(X)) dI + ∫
\ 0

 (H(I)) dI

where I = (X, A) is the concatenation of the input coordinates and
joint angles, H = F ∘ (C, K) and (I) = exp(− ⋅ ∣H(I)∣). rep-
resents the whole spatial domain, and 0 denotes the zero-level set.
In total, there are three terms that sums up together to get the final
loss. The first term constraints the norm of the spatial gradients of
the on-surface points to be one. The second and the third terms
separately encourage the on-surface points and off-surface points
to follow the definition of zero-level SDF. The on-surface points
should stay close to zero values and ground truth normals, while the
off-surface points should not be close to zero SDFs. During training,

we sampled the same number of points for both on-surface and
off-surface scenarios for every batch.

SUPPLEMENTARY MATERIALS
www.science.org/doi/10.1126/scirobotics.abn1944
Supplementary Results
Tables S1 and S2
Supplementary Methods
Movies S1 to S6

REFERENCES AND NOTES
 1. G. G. Gallup Jr., Self-awareness and the emergence of mind in primates. Am. J. Primatol. 2,

237–248 (1982).
 2. P. Rochat, Five levels of self-awareness as they unfold early in life. Conscious. Cogn. 12,

717–731 (2003).
 3. N. Koenig, A. Howard, Design and use paradigms for gazebo, an open-source multi-robot

simulator, in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS)(IEEE Cat. No. 04CH37566, IEEE, 2004), vol. 3, pp. 2149–2154.

 4. E. Todorov, T. Erez, Y. Tassa, Mujoco: A physics engine for model-based control, in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems (IEEE, 2012),
pp. 5026–5033.

 5. F. Faure, C. Duriez, H. Delingette, J. Allard, B. Gilles, S. Marchesseau, H. Talbot,
H. Courtecuisse, G. Bousquet, I. Peterlik, in SOFA: A Multi-Model Framework for Interactive
Physical Simulation, Soft Tissue Biomechanical Modeling for Computer Assisted Surgery
(Springer, 2012), pp. 283–321.

 6. E. Coumans, Y. Bai, PyBullet, A Python Module for Physics Simulation for Games,
Robotics, and Machine Learning; http://pybullet.org.

 7. J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa, M. Stilman, C. Karen Liu, Dart:
Dynamic animation and robotics toolkit. J. Open Source Softw. 3, 500 (2018).

 8. R. Tedrake, Drake Development Team, Drake: Model-Based Design and Verification for
Robotics, https://drake.mit.edu/.

 9. J. Bongard, V. Zykov, H. Lipson, Resilient machines through continuous self-modeling.
Science 314, 1118–1121 (2006).

 10. R. Kwiatkowski, H. Lipson, Task-agnostic self-modeling machines. Sci. Robot. 4, eaau9354
(2019).

 11. A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Riedmiller, R. Hadsell,
P. Battaglia, Graph networks as learnable physics engines for inference and control, in
International Conference on Machine Learning (PMLR, 2018), pp. 4470–4479.

 12. B. Chen, Y. Hu, L. Li, S. Cummings, H. Lipson, Smile like you mean it: Driving animatronic
robotic face with learned models, in 2021 IEEE International Conference on Robotics and
Automation (ICRA) (IEEE, 2021), pp. 2739–2746.

 13. K. Hang, W. G. Bircher, A. S. Morgan, A. M. Dollar, Manipulation for self-identification,
and self-identification for better manipulation. Sci. Robot. 6, eabe1321 (2021).

 14. H. E. Gardner, Frames of Mind: The Theory of Multiple Intelligences (Hachette UK, 2011).
 15. J. J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf: Learning

continuous signed distance functions for shape representation, in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (IEEE, 2019), pp. 165–174.

 16. V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G. Wetzstein, Implicit neural representa-
tions with periodic activation functions. Adv. Neural Inf. Process. Syst. 33, 7462–7473 (2020).

 17. W. E. Lorensen, H. E. Cline, Marching cubes: A high resolution 3D surface construction
algorithm. ACM SIGGRAPH Comput. Graph. 21, 163–169 (1987).

 18. S. M. LaValle, Planning Algorithms (Cambridge Univ. Press, 2006).
 19. S. Karaman, E. Frazzoli, Incremental sampling-based algorithms for optimal motion

plan- ning. Robot. Sci. Syst. VI, 104 (2010).
 20. M. Tancik, B. Mildenhall, T. Wang, D. Schmidt, P. P. Srinivasan, J. T. Barron, R. Ng, Learned

initializations for optimizing coordinate-based neural representations, in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2021),
pp. 2846–2855.

 21. K. Y. Goldberg, R. Bajcsy, Active touch and robot perception. Cogn. Brain Theory 7,
199–214 (1984).

 22. J. Bongard, H. Lipson, Automatic synthesis of multiple internal models through active
exploration, in AAAI Fall Symposium: From Reactive to Anticipatory Cognitive Embodied
Systems (AAAI Press, 2005).

 23. J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, G. S. Sukhatme, Interactive
perception: Leveraging action in perception and perception in action. IEEE Trans. Robot.
33, 1273–1291 (2017).

 24. S. K. Ramakrishnan, D. Jayaraman, K. Grauman, Emergence of exploratory look-around
behaviors through active observation completion. Sci. Rob. 4, eaaw6326 (2019).

 25. J. L. Schönberger, J.-M. Frahm, Structure-from-motion revisited, in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) (IEEE, 2016), pp. 4104–4113.

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

http://www.science.org/doi/10.1126/scirobotics.abn1944
http://pybullet.org
https://drake.mit.edu/

Chen et al., Sci. Robot. 7, eabn1944 (2022) 13 July 2022

S C I E N C E R O B O T I C S | R E S E A R C H A R T I C L E

13 of 13

 26. J. L. Schönberger, E. Zheng, M. Pollefeys, J.-M. Frahm, Pixelwise view selection for
unstructured multi-view stereo, in European Conference on Computer Vision (ECCV)
(Springer, 2016), pp. 501–518.

 27. D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv:1412.6980 [cs.LG]
(22 December 2014).

 28. A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An imperative style,
high-performance deep learning library, in Advances in Neural Information Processing
Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, R. Garnett,
Eds. (Curran Associates Inc., 2019), pp. 8024–8035.

 29. W. Falcon, PyTorch Lightning Team, PyTorch Lightning, www.pytorchlightning.ai.

Funding: This work was supported by DARPA MTO Lifelong Learning Machines (L2M)
Program W911NF-21-2-0071, NSF NRI Award 1925157, NSF AI Institute for Dynamical Systems

2112085, NSF CAREER Award 2046910, and a gift from Facebook Research. Author
contributions: B.C. and H.L. proposed the research. B.C. developed the main idea, algorithm
designs, implementations, simulation, and hardware experiments. H.L. and C.V. provided deep
insights and guidance on the algorithm and experiment design. B.C., H.L., and C.V. performed
numerical analysis. R.K. provided help on hardware experiments and was involved in the
discussions. B.C., H.L., and C.V. wrote the paper. All authors provided feedback. Competing
interests: The authors declare that they have no competing interests. Data and materials
availability: All data and software needed to evaluate the conclusion in the paper are
provided at https://robot-morphology.cs.columbia.edu/. Additional information can be
addressed to B.C.

Submitted 10 November 2021
Accepted 17 June 2022
Published 13 July 2022
10.1126/scirobotics.abn1944

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

https://arxiv.org/abs/1412.6980
https://robot-morphology.cs.columbia.edu/

Use of this article is subject to the Terms of service

Science Robotics (ISSN) is published by the American Association for the Advancement of Science. 1200 New York Avenue NW,
Washington, DC 20005. The title Science Robotics is a registered trademark of AAAS.
Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim
to original U.S. Government Works

Fully body visual self-modeling of robot morphologies
Boyuan ChenRobert KwiatkowskiCarl VondrickHod Lipson

Sci. Robot., 7 (68), eabn1944. • DOI: 10.1126/scirobotics.abn1944

View the article online
https://www.science.org/doi/10.1126/scirobotics.abn1944
Permissions
https://www.science.org/help/reprints-and-permissions

D
ow

nloaded from
 https://w

w
w

.science.org on July 14, 2022

https://www.science.org/about/terms-service

