
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

A graph model based blockchain

implementation for increasing performance

and security in decentralized ledger systems

Konstantinos Tsoulias1, Georgios Palaiokrassas1, Georgios Fragkos2, Antonios Litke1

and Theodora Varvarigou1
1National Technical University of Athens, Zografou Campus, 15773 Athens, Greece
2Dept. of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM, 87131, USA

Corresponding author: Georgios Palaiokrassas (e-mail: geopal@mail.ntua.gr).

The research leading to these results has received funding from the European Commission under the H2020 Programme’s project M-

Sec (grant agreement nr. 814917).

ABSTRACT Blockchains are being recently used as a supporting technology framework

for decentralized applications requiring functionalities such as exchange of value through

tokens, cryptocurrency and smart contracts. In this paper, we have developed a

decentralized application model in Python, where blockchain data are stored in a Neo4j

graph database. Following the basic principles of Ethereum blockchain network, we

implemented a Casper-like consensus mechanism and tested its effectiveness in achieving

finality. For block proposing, we employed both Proof of Work and Proof of Stake

protocols and examined how participants' incentives and consensus criteria differ

according to each one. A major part of this work is to incorporate the graph model in the

functionality of the blockchain and its components, while also exploiting its benefits in

data analysis by finding relationships between data and extracting their true value.

Through this approach, we were able to monitor and visualize changes in blockchain data

in various use case scenarios. Lastly, we ran a series of simulated experiments to test the

efficiency of the implemented technologies and mechanisms in preventing the most

common blockchain attacks such as the 51% Attack, Catastrophic Crashes and Attack

from dynamic validator sets. We show how the modelling of the blockchain data as a

distributed graph can assist protocols operations, enhance their security, and facilitate the

application of analytical methods to the stored information through path-dependent

queries.

INDEX TERMS Blockchains, Proof of Work, Proof of Stake, consensus mechanisms,

graph databases, blockchain security, Casper, Neo4j.

I. INTRODUCTION

Blockchains are regarded as both public and private

ledgers containing transactional data within their

decentralized data structures, which form a series of tightly

connected, timestamped blocks [1]. Their unique

architecture makes blockchain systems immutable in the

sense that transactions cannot be tampered once they are

officially validated and registered in a block of the chain1.

Based on cryptographic proof, blockchain technology

abolishes the need for a trusted third party, enabling for

reliable and robust decentralized applications, implemented

1 A series of connected blocks that starts on the Genesis Block.

on open and trustless networks of peers [2]. Blockchains

have been used as the underlying technology for many

cryptocoins and tokens [3], setting the ground for disrupting

the future Internet [4] as well as the traditional business

model by providing new means for exchanging value. Thus,

the research on various features of blockchains has become

very important in order to be able to enhance the

technological framework with characteristics that can pave

the way for a wider adoption of blockchain technology.

One such feature is finality, that needs to be achieved

through consensus protocols [5], assuring cryptocurrency

transactions cannot be changed, reversed, or canceled after

being published in the blockchain. Finality in Bitcoin's [6]

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

2 VOLUME XX, 2020

blockchain is achieved with the Proof of Work (PoW)

protocol that requires users' CPU power to link new blocks

of transactions to the existing blockchain, and thereby

forming a continuous record that cannot be altered without

redoing all the work. In the case of a fork, this process, also

known as mining [7], encourages users to always mine on

top of the longest chain, since it came from the largest pool

of CPU power and so it is the most difficult to reproduce.

The inherent characteristics of blockchain architecture,

like transparency, verifiability, privacy, and anonymity,

have encouraged since then, various industries and

operational domains to further explore its numerous

benefits and applications [8]. Blockchain technology has

also its drawbacks, with scalability [9], security, and energy

consumption [10] problems being the most significant.

Nonetheless, new protocols and solutions are continually

being developed [11]-[14] to address these problems and to

consolidate the blockchain technology and the

decentralized model, potentially transforming the way

people choose to transact globally [15]. One such example

is the Proof of Stake (PoS) protocol [16] that attempts to

restrict PoW's wastefulness, by using tokens instead of

computational work, as a scarce and well-distributed

resource to prevent cheap attacks to the blockchain.

However, PoS stakeholders’ incentives [17] differ from

those of PoW miners’ in a way that may compromise

network’s security. Virtually the most profitable tactic for a

stakeholder is to vote on every branch of the blockchain

tree2, thus making it harder to identify the most reliable

chain and reach a clear consensus. To tackle the so-called

Nothing-at-Stake problem [18], Ethereum [19] developers

created a partial consensus mechanism, called Casper [20],

that combines the PoS research and Byzantine Fault

Tolerance (BFT) [21] consensus theory. Casper overlays an

existing blockchain and offers the appropriate tools and

regulations to readjust participants' incentives [22], so that

they always consent to the most secure chain. This

technology is so recent that it has yet to be tested in a real

cryptocurrency, leaving some problems associated with still

open.

Along with the troubleshooting, efforts are also being

made to involve new tools and test new approaches in

blockchain technology [23]-[25], expanding its capabilities

and applications. In this context, and because of the high

interconnection of blockchain data, the representation of

blockchain as a distributed graph database is far from

absurd. Relationships between its data, keep blockchain

coherent, and may bear information of great analytical

value. Only a database that natively embraces relationships

is able to store, process, and query those connections

efficiently. While other databases compute relationships at

query time through expensive JOIN operations, a graph

database stores connections alongside the data in the model,

allowing millions of connections per second to be traversed.

2 The forking of chains in the ledger results in tree like structure rooted

at the Genesis Block.

In this paper, we have developed a decentralized

application model in Python that is connected to a Neo4j

database [26], where blockchain data are stored. Following

the basic principles of Buterin and Griffith’s original paper

[20], we practiced a Casper-like consensus mechanism to

function alongside the most popular block proposal

mechanisms: the PoW and the PoS protocols. A major part

of our work was to incorporate Neo4j in the functionality of

the above mechanisms and ultimately improving their

performance. For that reason, we developed a versatile

Graph Model for our blockchain database that allows for a

multilevel viewing of the stored data and, by extension,

numerous ways of accessing them. From the Neo4j Desktop

[27] application, we were able to monitor and visualize

changes in the deployed graph database in various use case

scenarios. Another advantage of the blockchain graph

database is the ease in applying analytical methods to the

stored data and to the relationships between them with

graph analysis tools. This innovation could solidify the

blockchain analytics field by facilitating the evaluation of

blockchain’s components and the behavior of the network’s

nodes. For this reason, we ran a series of simulated

experiments and by utilizing the annotated graph model, we

tested the efficiency of the implemented technologies and

mechanisms in preventing the most common blockchain

attacks; namely the 51% Attack, Catastrophic Crashes, and

the Attack from dynamic validator sets.

The rest of the paper is structured as follows: In Section

II we present the theoretical background for the tools and

mechanisms developed in this paper. In Section III we

discuss briefly about the published work that technically

relates to blockchain and the ideas proposed in our paper. In

Section IV we describe the architecture of the decentralized

application, while details about the implementation and the

functionality of its components are given in Section V. In

Section VI we run our application and test the performance

of the employed blockchain data model and the security of

the implemented protocols against the most common

blockchain attacks. Section VII is the conclusion of this

paper, where we summarize our findings and suggest

possible applications for the mechanisms we developed.

II. BACKGROUND

A. CASPER CONSENSUS MECHANISM

Casper is a partial consensus mechanism combining Proof

of Stake algorithm research and Byzantine fault-tolerant

consensus theory. Casper’s operations are backed by a

group of particular nodes, the validators [28], who are

responsible for voting on checkpoints and finalizing

transactions. A checkpoint is only a regular block, whose

height in the blockchain tree is an exact multiple of a

number. In Ethereum, for instance, this number is set to

100, so through the resultant checkpoint tree, validators can

finalize every 100 blocks at once, rather than voting on

every single block.

Every node can become a validator by depositing at least

the predetermined minimum amount of tokens. The number

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 3

of tokens deposited also represents the stake of the

validator, which rises and falls with rewards and penalties.

A node’s voting power is determined by his share of the

number of tokens deposited by all validators. Hence, when

we say “2/3 of validators”, we are referring to the deposit-

weighted fraction. To exit the validator sets and collect his

share a node must publish a withdraw message. After

exiting, the node is forever forbidden to re-enter the sets.

Validators can broadcast a vote message containing four

pieces of information: two checkpoints of the same

subchain3 s and t, together with their respective heights h(s)

and h(t). Therefore a vote can be represented with a link

from a source to a target checkpoint.

If at least 2/3 of the validators (by deposit) have published

the same vote with source s and target t, then s → t is called

a supermajority link.

 A checkpoint c is called justified if (1) it is the root, or (2)

there exists a supermajority link c’ → c where checkpoint

c’ is justified.

A checkpoint c is called finalized if (1) it is the root or (2) it

is justified, and there is a supermajority link c → c’ where

c’ is a direct child of c.

FIGURE 1. Example of justifying and finalizing checkpoints in the
checkpoint tree

Casper's proper function precludes two checkpoints of

different subchains from being both finalized (Figure 1). To

achieve this, all validators must comply with the following

rules:

An individual validator must not publish two different votes

{ 𝑠1, 𝑡1, ℎ(𝑠1), ℎ(𝑡1) } and {𝑠2, 𝑡2, ℎ(𝑠2), ℎ(𝑡2) }

such that either:

I. ℎ(𝑡1) = ℎ(𝑡2).

Equivalently, a validator must not publish two distinct votes

for the same target height.

or

II. ℎ(𝑠1) < ℎ(𝑠2) < ℎ(𝑡2) < ℎ(𝑡1).

Equivalently, a validator must not vote within the span of

his other votes.

Βreach of any of the above rules results in the slashing of

the offending validators (Figure 2); the permanent

withdrawal from the validator sets and the deletion of their

3 A series of connected blocks that starts on a fork of a chain.

deposits. In case of a rule violation, Casper guarantees that

all relevant evidence can be found, and the offenders can be

identified.

For the mathematical proof of the above proposition we

will be working on the checkpoint tree. Given two finalized

checkpoints xm and yn on two conflicting subchains, there

are two distinct chains of supermajority links from a

common starting checkpoint s (whether that is the Genesis

Block or not) to xm and yn respectively:

s → y0 → y1 → … → yn → yn+1

and

s → x0 → x1 → … → xm → xm+1

Where, xm+1 and yn+1 are the children of xm and yn

respectively, since xm and yn are finalized (finalization

rule). The heights of all checkpoints xj , yi in the above

chains should be different, otherwise rule I is violated.

Without loss of generality we assume that h(xm) > h(yn),

hence that h(xm) > h(yn+1), since h(xj) ≠ h(yi) . Let k be

the lowest integer such that h(xk) > h(yn+1); then h(xk-1) <

h(yn) (or h(xk-1) = h(yn), which again violates rule I). This

implies the existence of a supermajority link xk-1 → xk ,

where h(xk-1) < h(yn) < h(yn+1) h(xk), thus violating rule II.

If two conflicting supermajority links l1 and l2 exist, we can

conclude that at least 1/3 of the validators violated the

slashing conditions, since at least 2/3 of the validators have

published l1 and at least 2/3 of the validators have published

l2.

FIGURE 2. Proof of the effectiveness of Casper's slashing conditions.

In the case of a fork, miners/stakeholders are incentivized

to always build on the branch that contains the highest

justified checkpoint. This correct-by-construction fork

choice rule [29], besides being the optimal strategy for

nodes, also prevents pathological scenarios to occur; by

following the longest chain fork choice rule, Casper can get

“stuck” where any blocks built atop the longest chain

cannot be finalized without some validators getting slashed.

So, this rule is to be followed by every miner/stakeholder

since it ensures the liveness of the consensus protocol

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

4 VOLUME XX, 2020

B. NEO4J GRAPH DATABASE

A graph database (GDB) [30] is a database designed to treat

the relationships between data as equally important to the

data themselves. Graph databases are part of the NoSQL

databases created to address the limitations of the existing

relational databases. This is achieved by using graph

structures for semantic queries with nodes, edges, and

properties to represent and store data. A graph database is

intended to hold data without constricting them to a

predefined model by storing connections alongside the data

in the model, while other databases compute relationships

at query time through expensive JOIN operations. Hence,

accessing nodes and relationships in a native graph

database is an efficient, constant-time operation.

Neo4j [26] is an open-source, NoSQL, highly scalable

native graph database that provides an ACID-compliant

transactional backend for developing applications. This

means that it efficiently implements the property graph

model down to the storage level while using pointers to

navigate and traverse the graph. Performance-wise Neo4j

delivers consistent, real-time efficiency for multi-hop

queries on large, interconnected datasets. Moreover, it

offers a versatile property graph model that allows for

fluidly evolving solutions to meet user’s requirements.

Cypher [31], a declarative query language similar to SQL,

but optimized for graphs, is now used by other databases

like SAP HANA [32] Graph and Redis graph [33] via the

openCypher project [34].

The property graph model of Neo4j organizes data as

nodes, relationships and properties. Nodes are the entities in

the graph that can hold any number of attributes (key-value

pairs), called properties. They can also be categorized into

labels, that each represents a specific role for the nodes

tagged with it. Two semantically-relevant nodes can be

linked with a directed relationship. Relationships are

characterized by their type, and like nodes, they can too

hold properties. Additionally, due to the efficient way in

which they are stored, any number or type of relationships

can be shared by two nodes without sacrificing

performance.

Neo4j also offers a growing, open library of graph

algorithms [35] that are optimized for fast results. With

little to no coding required, these algorithms reveal the

hidden patterns and structures in the stored connecting data

around pathfinding, centrality and community detection.

Lastly, Neo4j Browser, a graphical user interface (GUI)

that can be run through a web browser, allows for querying,

visualization, and data interaction. All these capabilities

make Neo4j the ideal tool to employ in representing,

visualizing and analyzing the cumbersome and highly

connected blockchain data.

III. RELATED WORK

A consensus protocol is a fault-tolerant set of rules that

ensures all nodes agreement on the order in which entries

are appended to the blockchain, despite the malicious or

ambiguous acting of individual nodes amongst them. The

CPU voting consensus that Nakamoto suggested with Proof

of Work (PoW) [6] encouraged a multitude of new

mechanisms based on proof of concepts [36] to try and

tackle PoW's problems while maintaining a similar level of

security. Proof of Stake (PoS), the most popular and

energy-saving alternative to PoW [10] [37], requires

participants to prove the ownership of the amount of

currency, expecting a strong correlation between a node's

wealth and its fidelity. Our application incorporates the

above protocols as block proposal schemes and highlights

the adjustments needed for them to work appropriately

under a Casper-like consensus mechanism.

Other protocols such as Proof of Activity (PoA) [38]

combine useful elements from both PoW and PoS.

Operating PoA requires building blocks from miners via

PoW, which are controlled and signed by active network

stakeholders. The hash of any new block header solved by a

miner is mapped to one of the satoshis in the network. Then

a procedure is followed to track its owner, who then is

responsible for signing the new block header. This process

is repeated N times, for the new block is published. As it

understood, like in a PoS scheme, the more tokens a node

possesses, the more chances he has to be elected. The

protocol is called Proof of Activity because it also requires

the N stakeholder to be active; otherwise, another block

header (with different N stakeholders) will be the first to

sign.

Casper [20], the partial consensus mechanism is perhaps

the most advanced PoS algorithm; it’s innovation is so new

that it has yet to be thoroughly tested in a large scale

environment. Recently, Ethereum’s developers announced

the first release [39] of Casper Friendly Finality Gadget

(FFG) and the code was made available to researchers,

auditors and client developers, to start testing the software.

Essentially, Casper FFG is a simplified version of a

Byzantine fault tolerant protocol [21], with “votes” for

checkpoints taking the place of prepares and commits.

Shortly, Ethereum 2.0 [40] is expected to be launched,

which will include Casper CBC [41]; an upgraded version

of Casper FFG that will complete the transition from PoW

to PoS consensus. However, researchers have already been

examining the effectiveness of Casper's principles, the

incentives involved and mechanisms through individual

decentralized application models. Such an example is

presented in the work of Moindrot et al. [42] where a

simulation of a blockchain application in Python was

developed to familiarize the reader with Casper's basic

operations, as well as to examine the impact of latency and

disconnected nodes in the protocol's finality. However, this

simulation is far from a working DApp since it does not

involve active users, and some key blockchain and Casper

components, like consensus protocols and dynamic

validators sets were not implemented.

Furthermore, the Ethereum project has adopted the

GHOST protocol, that suggests an alternative to the

longest-chain rule of common PoW protocols; that is,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 5

selecting the heaviest sub tree rooted at each fork. By doing

so, developers aim to avoid scenarios where an attacker's

chain can grow longer without him having the majority of

network's computing power. An example of that is when

larger blocks are created that take longer to propagate

through the network, thus resulting in more forks to occur.

In that case, the Greedy Heaviest-Observed Sub-Tree rule

proposes that those off the main chain blocks can still

contribute to it's validity. That idea of using graphs as a

way to optimize performance and security of distributed

ledgers was further examined in the cryptocurrency space.

A well-known blockchain protocol that introduces a unique

graph based model in blockchain is IOTA's tangle. This

protocol is entirely based on a DAG, which is used for

storing and verifying transactions by connecting them to

others, already confirmed. Nevertheless, this

implementation differs in many ways from the typical

blockchain structures since it doesn't use blocks to store

transactions, it combines the roles of transaction issuers and

transaction approvers and unlike most protocols it doesn't

include monetary rewards. Acknowledging the tremendous

benefits that graph solutions can provide in distributed

ledgers, we propose a model, that stores and connects

blockchain's digital entities in a Neo4j database.

Modeling blockchain as a graph database is not a novel

idea [43]. Several studies [44]-[46] have highlighted the

analytical value within the blockchain data and the

relationships between them that can be optimally exploited

through a high-fidelity blockchain graph model. In [44]

specifically, this was done, by parsing and deserializing the

Bitcoin raw binary data files into a suitable format for

importing into Neo4j. Then, they ran the annotated

graphthrough a graph-analysis framework that uses path-

dependent Cypher queries to extract and summarize useful

statistics. This implementation paves the way for a

blockchain analytics field that focuses on identifying and

even predicting behaviors in both the nodes and their

published messages. In our paper we extend the idea of a

graph blockchain database by also incorporating the graph

model into the core functions of blockchain and its

mechanics. Furthermore, we suggest a both flexible and

lean blockchain model that negates the need for a locking-

unlocking graph mechanism by being stored alongside the

traditional blockchain for a low memory overhead. This

implantation intends to access data used by consensus

protocols and block-proposal schemes at much greater

speeds than the traditional way, ultimately resulting in

higher performance decentralized systems.

IV. SYSTEM OVERVIEW

A. P2P NETWORK

Every decentralized application is supported by a P2P

network [47] where members can interact with one another

without the need for a trusted authority. In our model, we

simulate such a network by utilizing the Python Flask

Microframework. In particular, every node is implemented

as a separate Web application of the same structure, to

ensure equality. For the purposes of this paper, we deployed

the P2P network on a single machine by having each node

run on a different port of Python's local development

server. This implementation allowed us to uniquely identify

each node by its port number so that it functions as the

node's address.

FIGURE 3. Transaction broadcasting sequence diagram.

Communication between nodes is enabled through the

Flask-RESTful extension; each node stores its peers' ports-

addresses and can transmit messages to them by merely

invoking the suitable API Resources with a supported

HTTPS method. Newcomer nodes query one or more IP

addresses hardcoded into their scripts that act like DNS

seeds, by storing and transmitting peers’ IP addresses. The

procedure followed when a node broadcasts a transaction to

the network can be visualized in the sequence diagram of

Figure 3.

Lastly, every peer initializes and utilizes a Neo4j

distributed graph database, in which blockchain data are

stored and dynamically accessed.

B. BLOCKCHAIN GRAPH MODEL

Representing common blockchain data in a Graph Database

can be arranged in a forthright manner; a node can be

labeled either as Block or as Transaction, with dedicated

attributes in each case. Two consecutive blocks are linked

with a "CHILD_OF" relationship, while transactions are

connected to the Blocks they belong to, with an

"INCLUDED_IN" relationship. Following this model, we

can depict any data broadcasted in the network, that is

stored in a Block and has attributes, as a separate node or

label in the Neo4j database.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

6 VOLUME XX, 2020

FIGURE 4. Blockchain database Graph Model.

However, the benefits of this implementation are not

limited to presenting data in an organized and

comprehensible way. Neo4j offers the ability to quickly

access stored information by utilizing graph theory

algorithms as well as to apply analytics [48] on blockchain

data, by executing graph algorithms through complex

Cypher queries. Nevertheless, not all of the information is

worth storing in the Neo4j graph database. The separation

criteria are related to the usability of the stored data in

blockchain functions and their analytical value. The

efficiency of Neo4j is further optimized when the graph

model expedites the retrieval of inaccessible native

dataresulting in a higher performance system.

Hence, the graph database design is not absolute but

rather is to be considered as a versatile tool, completely

dedicated to its blockchain, containing the information of

value and connecting them according to the needs of its

mechanisms and protocols. One such example could be

calculating a user's balance, which would require finding all

transactions that he participates in by crawling each block

in the blockchain tree. A blockchain that values such metric

should store and connect users’ transactions in an optimal

way. Also, another practice might involve the handling of

smart contracts [49][50] perhaps in an e-shop application.

In that case a useful indicator could be the credibility score

of a user, calculated by retrieving the contracts they were

involved in and by considering the credibility scores of the

other parties as well as the method of the contract’s

resolution [51] (agreement, dispute, use of mediator etc.).

Hence, the graph model of such an application should

include smart contract nodes, link them with the users that

participate in them and store a resolution method property.

Bearing in mind the above principles, we have designed

a graph model that facilitates the most common

blockchain’s operations as well as those of Casper’s

consensus mechanism, while allowing for path-dependent

queries to be applied and information to be retrieved in a

resourceful manner. The design presented in Figure 4 takes

advantage of blockchain’s highly interconnected data and

offers a simplified architecture that can be stored alongside

the original blockchain with an additional charge of 33%

(for additional details please check the Running the System

subsection) in terms of space complexity, to assist the

operation and the evaluation of its components. Our model

classifies blockchain data into six distinct node labels.

Users are linked to the Transactions they participate in and

to the messages they publish. Messages are associated with

validator activities and are categorized into deposit,

withdraw, and slashing messages. Transactions, messages

and votes are linked to the blocks in which they are added.

Each Block is connected with its parent-block, while

Checkpoints Blocks are double-labeled and additionally

linked to the previous Checkpoint in the checkpoint tree.

V. IMPLEMENTATION DETAILS

A. BLOCK PROPOSAL MECHANISMS

1) PROOF OF WORK

In Proof-of-Work blockchains, nodes compete with each

other to solve a cryptographic puzzle, like producing hashes

with specific patterns. This procedure, known as mining, is

implemented in our application and uses three main

components: a hash function, a random number generator,

and a winner verification method.

Every prospective miner first initiates a subprocess for

mining the next block. The procedure begins by

constructing the new block for the miner’s selected chain as

an object of class Block. For this block to be published, the

miner must first solve it by appending random numbers to

its header and hashing the resulted string. When an SHA-

256 hashcode [52] with a specific amount of zeros is

produced, the block is considered solved and is broadcasted

in the network. The number of zeros required is defined by

the difficulty parameter, with which we can adjust the

average block time.

After receiving and verifying the new block, the other

miners terminate any ongoing mining processes and update

their local data. Python multiprocessing library allows for

the mining process to be executed in parallel, without

impeding the rest of the Flask Server operations.

2) PROOF OF STAKE

The Proof of Stake block proposal system, simulates the

mining process by using instead of computational effort,

as proof of the block constructors’ reliability. Here, users

who possess a larger amount of tokens have a higher

chance of being selected, as they have stronger incentives

to protect the network and the value of the cryptocurrency.

In our implementation, a node can apply to become a

stakeholder by broadcasting an HTTPS message to the

network. Nodes of the same chain will store the received

application with the applicant's public key and stake. The

election process is triggered by sending a "start_pos"

HTTPS request to one of its nodes and is essentially a

stake-weighted random choice between applicants. If the

"start_pos" requests are sent to randomly selected nodes,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 7

FIGURE 5. New block’s validator sets’ configuration example.

eventually, the chain with the most online nodes will grow

the longest. However, this affects neither the security nor

the finality of the consensus protocol, since here, unlike

PoW, chain length is not a measure of difficulty.

Instead, we use the staking of each block to determine

which chain was the hardest to create and thus the hardest

to be reproduced. The problem that emerges here is that

stakeholder incentives run counter to this security measure,

since the optimal tactic for them is to bet on the blocks of

every branch. Thus staking-wise, the weaker blocks are

made indistinguishable from the stronger ones, and the

Staking measure becomes unreliable. Casper aims to alter

these incentives by assigning consensus to the validators.

B. CASPER-LIKE CONSENSUS PROTOCOL

1) DYNAMIC VALIDATOR SETS

To achieve finality in our Proof of Stake protocol, we

implemented a Casper-like consensus protocol, that can

work over any block proposal scheme as well. This

mechanism should also allow the switching of validators

without compromising blockchain's security. Our design

incorporates the key principles [53] laid down by Casper's

creators into one straightforward simple implementation.

Specifically, we suggest the use of two dynamic validator

sets responsible for voting on checkpoints; the

"current_front" and the "current_rear" validator sets. In

addition to these two, we utilize the "new_front" structure

to store the next state of the current_front validator set, thus

greatly simplifying the process. Every block stores and

handles these structures, recognizing in that way its

expected voters and the future state of all three validator

sets. A node can become or quit being a validator by

broadcasting a deposit or a withdraw HTTPS message,

respectively, to the rest of the network. Every block inherits

its parent’s structures, and subsequently, depending on the

deposits and withdrawals it includes, it adds and removes

nodes from its new_front set. Changes in the voting

validator sets take effect after the finalization of a

checkpoint. So, if checkpoint C gets finalized, the next

block B created in the same subchain, that is also a child of

block A will have its validator sets modified as shown in

Figure 5.

In this way, current validators authorize the next by

finalizing specific blocks. After a validator's withdrawal

gets finalized, he will remain in the "current_rear" set until

another checkpoint gets finalized. Further, by having both

front and rear validators agree, for a checkpoint to get

finalized, we ensure that all new validators vote in line with

their predecessors, achieving a continuous line of consensus

throughout the blockchain. The final measure that we need

to adopt is preventing the out of order checkpoint

finalization. This step is crucial for Casper's safety since

otherwise, there can occur scenarios where conflicting

justification and finalization votes have been sent by

disjointed validator sets,

and therefore it is impossible to trace and punish the

offenders.

2) VOTING

Given the changes in the operation of the validator sets and

the new security risks arising from them, we redefine a

supermajority link, a justified and a finalized checkpoint as

follows:

An ordered pair of blocks (s, t), has a supermajority link,

if both at least 2/3 of checkpoint's t "current_front"

validator set have published votes s → t and at least 2/3 of

checkpoint's t "current_rear" validator set of t have

published votes s → t.

Given an ordered pair of checkpoints (s, t), t is

considered justified, if there is a supermajority link s → t.

Given a checkpoint s' and its direct child t', s' is

considered finalized, if s' is justified, there is a

supermajority link s' → t' and all votes justifying and

finalizing checkpoint s' are included in the subchain before

the creation of the next checkpoint

As with the implementation of the validator sets, we use

three auxiliary data structures that are stored in each block

and facilitate the voting process. In the front_votes and

rear_votes structures, we store the sent links with the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

8 VOLUME XX, 2020

FIGURE 6. Versatility of the Blockchain Graph Model.

majority rates received, while in the "justified" list. we store

the justified checkpoints.

A node broadcasts a vote s → t, via a "submit_vote"

HTTPS message. For this vote to be valid, it must contain

the required information; "source_hash" , "source_height",

"target_hash", "target_height", "public_key". When

importing such a vote into a block b, a series of tasks are

performed by the miner/stakeholder:

i) checking that blocks b and t belong to the same

subchain; ii) calculating the sender's stake participation in

each of the validator sets of block t and confirms that at

least one of them is greater than 0%; iii) adding the

calculated percentages to the total vote rates that the s → t

link has already received in the "front_votes" and

"rear_votes" sets; iv) including t in the "justified" list in the

case of s → t being a justification link, that has achieved a

supermajority of at least 66%.

These data structures depict the votes included in the

current block's ancestors and not in the whole blockchain

tree. Hence, each block entry can be uniquely described

only by the block's height.

Finally, when creating a new checkpoint, the miner will

check its stored data in order to determine whether the

previous checkpoint in the chain got finalized. If the

finalization supermajority link exists and the previous

checkpoint also appears justified, we understand that all

votes required have arrived in time and are stored in blocks

of the same subchain. In this case, the miner notifies peers

that the previous checkpoint is to be considered finalized

VI. EVALUATION

A. RUNNING THE SYSTEM

 While blockchain owes many of its advantages in the way

that it organizes its data, there is scope for improvement on

accessing them. A key point of our research was to suggest

a graph model, that abolishes the need for crawling each

block in the blockchain and allows for the otherwise

cumbersome information to be optimally retrieved. In this

section, we run the decentralized application and examine

how the employed graph model enhances the performance

of the blockchain and its components. The Neo4j Desktop

application we are using, runs the Neo4j Browser version

4.0.1 and the Neo4j Server version 3.4.10, providing an

environment to visualize dataand work on our local Neo4j

databases. Figure 6 shows the versatility of our graph

model, that can be traversed in multiple ways depending on

the type of information requested. We present two instances

in which we recorded significant performance

augmentation by utilizing the Neo4j Graph Database;

calculating balances, tracing offending validators.

The calculation of a user's balance in the blockchain tree

can be performed rapidly, by pinpointing his corresponding

Neo4j node in the "Users" label and parsing his "To" and

"From" relationships. For the same calculation to be done

along only one branch, we execute a directional paths

finder algorithm from the final block b to the user node and

keep all "From" and "To" relationships included in those

paths.Our design allows each block to connect only to its

previous block through a backwards "CHILD_OF"

relationship. Since each block can have only one parent

block, we can isolate a single chain from block b to the

Genesis Block with a path consisting of “CHILD_OF”

relationships.

The following Cypher query returns the total number of

tokens sent to "ADDRESS" with transactions that are

included in the chain extending from block of hash

“HASH” to the Genesis block:

MATCH (b:Blocks{hash: HASH }) - [:CHILD_OF*0..]

 -> () - [k] - (t:Transactions) - [:TO] ->

 (u:Users{hex:'ADDRESS'})

 RETURN SUM(t.amount)

Unlike the classic blockchain structure, the graphical

model here allows for bidirectional traversing of entities in

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 9

the requested path. We can evaluate and analyze any query

through the Neo4j by looking at its execution plan: The

PROFILE command runs the given statement while

keeping track of how many rows pass through each

operator, and how much each operator needs to interact

with the storage layer to retrieve the necessary data.

Profiling the above query reveals how the Neo4j Planner

takes advantage of blockchain's data model and optimizes

the match by taking the node-degree into account when

checking for the connection, starting on the smaller side

while caching internally. Specifically, it avoids crawling

each block and examining the hundreds of transactions

contained in them; instead it follows only the transactions

that the requested node participates in.

Casper bases its effectiveness on its ability to identify

and punish malicious validators. In our Casper-like

protocol, we incentivize the network's nodes to track and

report those offenders by offering them financial rewards in

the case of a successful slashing. Furthermore, all evidence

for a rule violation can be discovered and recovered by any

node, as all the sent votes are stored publicly in the

blockchain.

The incorporation of Neo4j into our application and the

complex Cypher queries it allows, further facilitates the

detection of such offending votes in the blockchain.

Specifically, we can request all distinct pairs of conflicting

votes sent by the same validator with two simple Cypher

queries:

MATCH (v1:Vote), (v2:Vote)

WHERE v1.r_from = v2.r_from

AND v1.target_height = v2.target_height

AND ID(v1) < ID(v2)

RETURN v1.r_from, v1, v2

Returns all distinct pairs of votes; v1, v2, sent by the same

validator with targets at the same height.

MATCH (v1:Vote), (v2:Vote)

WHERE v1.r_from = v2.r_from

AND v1.target_height > v2.target_height

AND v1.source_height < v2.source_height

AND NOT ID(v1) = ID(v2)

RETURN v1.r_from, v1, v2

Returns all distinct pairs of votes; v1, v2, sent by the same

validator, in which one vote is within the span of the other.

The above queries apply to all published votes in the

blockchain tree and not in a specific branch. The process of

tracking offenders is greatly simplified since sent votes are

indexed with the "Votes" label and serial block access is no

longer required.,

If measured by traditional DB criteria, traditional

blockchain, seems poor: throughput is only a few

transactions per second, capacity is a few GB and most

importantly it has essentially no querying abilities, thus

making it unsuitable for applying statistics on its data.

Several efforts [54] have been made to improve the

traditional blockchain database in terms of performance,

scalability and queryability. However, these

implementations follow a NoSQL approach meaning that

they store sets of disconnected aggregates, that makes it

difficult to use them for connected data. The most common

strategy for adding relationships to such stores is to embed

an aggregate’s identifier inside the field belonging to

another aggregate, effectively introducing foreign keys.

But, this requires joining aggregates at the application level,

which given blockchain's high interconnectivity quickly

becomes prohibitively expensive. We find that graph

databases optimally exploit the benefits of blockchain's

unique architecture and create versatile data structures that

can be traversed in real time.

The performance evaluation of our graph tool compared

to that of the document-oriented approach is in agreement

with the results of several studies [55][56] that suggest the

overall superiority of graph databases regarding querying

time of the connected information. Specifically, in Figure 7

we present our findings regarding the average query

execution time for both our private blockchain application

that follows a document-oriented database architecture and

our Neo4j blockchain database in logarithmic scale. The

query used in this case was a simple balance calculation for

a specific user. To have a fair comparison, memory

consumption in Neo4j should not exceed 13GB of RAM,

which is what an Ethereum full-node uses. To achieve we

set both heap and page cache to 4GB each, assuring that

when combined with the extra memory that JVM needs to

function correctly, Neo4j’s process memory consumption

will not grow beyond the desired levels.

FIGURE 7. Average query execution time for Neo4j and Blockchain
databases.

While that the graph model and the appropriate Cypher

queries can simplify the procedures performed by the

protocols and mechanisms that function in the blockchain,

the space complexity of our implementation, should also be

considered. We can calculate the Neo4j stored records'

sizes as follows: 15 B for Nodes, 34 B for Relationships, 41

B for Properties for nodes and relationships. In our graph

model, we suggest that a Transaction consists of the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

10 VOLUME XX, 2020

following contents: the Transaction Node, 3 Relationships

(FROM, TO, IN) and 2 Properties (amount, hash). Hence a

published Transaction occupies 1 × 15 + 3 × 34 +
2 × 41 = 199 B of disk space. Comparing this number to

the average Transaction size in Bitcoin which is 600 B, we

understand that storing and utilizing our graph model

alongside the traditional blockchain data would mean a

33% increase of the total blockchain size.

For the computation, memory configuration depends on

how much virtual memory will the JVM for Neo4j use at

runtime. Thus, the more the memory allocated matches the

size of the database, the less swapping of data will occur at

runtime, ultimately resulting in higher performance. Storing

the 258 GB of Bitcoin’s data [57] in our graph model would

require almost 258 × 0.33 = 86 GB of memory. However,

the memory used by the Neo4j instance is the collection of

data requested by the client. For path-dependent queries, a

precise calculation of that can be complicated since it may

involve duplicate nodes and relationships. On the contrary,

we can make a reasonable estimation of the memory

required for the two simpler queries used to spot offending

validators. In that case, we request all N pairs of votes that

consist of one node and four properties. Hence, the memory

required for this query to be optimally executed is 𝑁 × 𝑁 ×
(15 + 4 × 41) = 179𝑁2 B. To further reduce the space

complexity of our implementation and improve its

effectiveness we are exploring additional graph models and

tools that will entirely base their operation on them.

B. PREVENTING ATTACKS

In this section we test the robustness of the mechanisms

developed against the most renowned blockchain attacks. In

the case of Casper, security against several types of attacks

is provided by its nature. Casper can tolerate 1/3 of the

validators being malicious in achieving finality; any percent

larger than that can stop the network from finalizing any

new checkpoints. On the contrary, its security is only

compromised when the dishonest validators achieve

supermajority in both validator sets; thus being able to fully

control the finalization of new checkpoints. Sybil attacks

are prevented as Casper operates in a Proof of Stake

manner; the size of a validator's deposit determines his

voting power. To further reduce the impact of multiple-

address users, Casper requires a large number of tokens

being deposited, to become a validator.

While we saw how the Neo4j can assist in tracking

Casper’s offending validators, safety under other types of

attacks is to be examined through a series of simulated

experiments on our application. The vulnerability of PoS

Casper systems in 51% attacks, and the optimization of

parameters for a consensus protocol resistant in catastrophic

crashes will be the main focal points of this section.

The simulation process is enabled through a batch script

that initializes nodes and performs the basic functions of

miners and validators. The above process also provides for

the existence of side-chains that can be created in pseudo-

random manner; that is an adjustable parameter that

determines the possibility of a fork to occur on each block.

The simulated results are gathered with the aid of a python

script that executes Cypher queries to the Neo4j database,

where the native blockchain data are stored. Thus, we once

more showcase the benefit of the blockchain graph model

in quickly pinpointing and extracting high-value analytics

regarding, in this case, the evaluation the blockchain’s

mechanisms as well as the behavior of its participants.

FIGURE 7. Consensus with Fixed and Fluctuating Inactivity Leak.

1) CATASTROPHIC CRASHES
If more than 1/3 of the validators are disconnected from the

network due to computer failures, network partitioning, or

risky behavior, it is virtually impossible to finalize new

blocks. In this case, the Inactivity Leak can help the

blockchain recover, by gradually decreasing the stake of the

offline validators and thus weakening their voting

power. Inactivity Leak's value can either be fixed or

fluctuating and the money deducted from the inactive

validators can either be erased or returned to them

sometime after they get back online. In our study, we are

focusing on optimizing the role of the Inactivity Leak in

Casper's security. In other terms, penalties should be

adjusted, so that the network can effectively and quickly

overcome a catastrophic crash, while voting remains

ultimately profitable for validators with short absences.

We examine the efficacy of a fixed and a fluctuating

Inactivity Leak in achieving consensus, after a Catastrophic

Crash occurs, at which 50% of current validators

disconnect. To simulate this, we initialized 1000 validators

of which 500 were only online and able to cast a vote. The

consensus rates on justification and finalization votes can

be stored in the checkpoint nodes as a separate property,

while not significantly affecting the overall space

complexity of our Neo4j implementation, since checkpoints

are sparsely distributed throughout the blockchain tree. In

both cases of Inactivity Leaks, penalties are initially set to

-1% and take place per 10 checkpoints. Should consensus

not be reached during that period, non-fixed Inactivity Leak

decreases by 5% until at least one block gets finalized. On

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 11

FIGURE 8. Consensus with Fixed and Fluctuating Inactivity Leaks for subchains of varying strengths

 Figure 7 , we can observe the change in the percentage of

active validators, justified and finalized checkpoints for a

stable and a fluctuating (Figure 7) Inactivity Leak.

If we now consider the existence of additional candidate

main chains in the network, we can assume that the

probability of a checkpoint being voted is proportional to its

subchain's relative strength. The relative strength of a

checkpoint or a subchain derives from the criteria that

validators use when voting. Thus, in a PoS blockchain with

honest validators, the relative strength of X could be

interpreted as the total amount of tokens staked on X

compared with that on checkpoints at the same height.

Now, we simulate the previous voting process, while taking

into account different probabilities of the main chain being

voted.

The results displayed in Figure 8 for both types of

Inactivity Leak suggest that the fluctuating inactivity leak

diminishes the influence that the relative strengths and the

number of subchains have on the speed of reaching

consensus, since in every case the first finalized block

appear around epoch 9. In the instance of the fixed

inactivity penalty consensus is highly dependent on the

strength of the candidate blocks, delaying the first

checkpoint finalization as long as 30 epochs in some cases.

However, the acceleration of consensus that a Fluctuating

Leak offers associates additional risk with the role of

validators, as it shrinks the time window within which

validators can recover a crash without suffering extensive

losses on their deposits.

2) 51% ATTACKS

The 51% attack refers to a blockchain attack performed by

a group of miners that control more than 50% of the

network's mining or computing power and could potentially

control new transactions' confirmation to double-spend

coins. Here we examine whether such an attack could be

feasible in our Proof of Stake-Casper model and whether

the inherent features of these mechanisms favor the Voting

Power centralization amongst stakeholders and validators,

respectively.

Regarding PoS, Voting Power centralization can be

checked using the PoS scheme we have implemented in our

network. According to this, stakeholders have a chance of

being selected proportionally to their share of capital. The

winning node will be rewarded with a fixed amount of

cryptocurrencies. In our simulation we initialized 1000

nodes with the voting power distribution being similar to

that of real PoS networks. Then, we initiate the stakeholder

election process for 1,000,000 simulated blocks and check

again for potential wealth accumulation. To calculate the

total stake of each stakeholder in each case, we take

advantage of the Cypher queries presented in Section A,

which greatly simplify the process. The initial distribution

of hashrate as well as the distribution after the election

process is presented in Figure 9 (a) in a detailed and

simplified form where only PoS stakeholders that possess

more than 3% of the total tokens are shown. The two

distributions appear almost identical after 1,000,000 blocks,

which means that the model followed maintains any

financial differences between the nodes of the network

without expanding them percentage-wise.

Like many other BFT protocols, Casper uses 1/3 as the

maximum number of faults it can tolerate. Given n total

nodes, of which there are f byzantine nodes, we need at

least t nodes to agree to reach consensus. Assuming that the

n-f nodes are split into two equally sized groups of (n - f)

/2, we want to make sure that the influence of the byzantine

nodes that may act arbitrarily isn't enough to achieve

consensus. Hence t > (n - f) / 2 + f, ensuring that the two

groups cannot decide different things and result in a safety

failure. For liveness, we make sure that the n - f nodes can

come to a consensus, without the cooperation of the f

byzantine nodes. Thus (n - f) ≥ t. By combining the two

constraints, we get n/3 > f as the fault tolerance threshold of

Casper.

In this way, to adequately control Casper’s finalization

process, the attackers would have to acquire at least 67% of

the total deposits in both validator sets. Still, the 34% in just

one validator set would be enough to block the network

from finalizing any new checkpoints. Another fundamental

parameter is that Casper's structure should be such, that it

does not amplify economic differences between validators,

jeopardizing the sets' decentralized character. Other than

being the backbone of Casper’s operation the adopted

reward-punishment system also dictates the motives in

consensus groups and hence the possibility of centralization

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

12 VOLUME XX, 2020

of power in them. To underline the significance of rewards,

we tested two different approaches in our Casper-like

protocol: a system that encourages consensus and another

that encourages participation.

The results in each case were gathered with the aid of

Cypher queries, for quickly pinpointing each validator’s

votes through the “Vote” label and retrieving their voting

percentages in each set from the node’s properties. While

the initial distribution of PoS voting power depicted

previously can be set similar to that of the real PoS

cryptocurrencies, the novelty of Casper's ideas imposes

several restrictions when selecting appropriate data inputs.

However, the fact that Ethereum requests 1500 ETH as the

minimum validator's deposit, a demand that only 5000

addresses can fulfill at the moment, in combination with the

risk associated with being a validator allows for a good

estimation of the front and rear sets sizes. By extension, the

distribution of voting power can be directed by that of the

stake distribution of the top 5000 Ethereum addresses.

(a) Example of decentralized voting power distribution in PoS before and

after 1,000,000 blocks

(b) Example of centralization of voting power in a validator set before and
after 2,000 checkpoints

FIGURE 9. Examining distribution of power in consensus groups.

To recover from a dead-end situation where consensus

was not reached for several checkpoints, the protocol can

favor groups of validators with consensus rates that exceed

a regulated percentage, through bonus rewards. This

scheme suggests the gradual tradeoff between system's

liveness and security where the strongest consensus group

will eventually prevail over the rest of the set. However,

rewarding consensus underlies a voting power

centralization danger. By implementing this scheme for 250

validators and running it for 2000 checkpoints, as

demonstrated in Figure 9 (b), we saw, that even with all

validators being honest, those with larger deposit shares are

more likely to receive this bonus, and further increase their

power. Thus, economic differences are amplified

exponentially. Moreover, those powerful nodes would have

a stronger influence on the rest of the validators who would

be incentivized to follow the majority to reach consensus

and earn the bonus.

The danger of voting power centralization, lurking in

consensus-enforcing reward systems leads us to the

participation valued approach of the original Casper. This

can be achieved with a deposit-equivalent reward given to

those who have cast at least N votes during a predetermined

period with targets of height > h, where h is the height of

the highest justified checkpoint, so that the broadcasted

votes are relevant with the checkpoint finalization process.

By doing so, powerful validators have no advantages over

the rest of the set as long as everyone participates in the

voting process. This rewarding system is deceptively more

similar to that of the PoS than the previous one as long as

Casper is responsible for the finalization, the only

difference being that in PoS non-participating nodes face 0

projected profits instead of Casper’s negative penalties.

Finally, to resolve dead-ends, validator's minimum deposit

is made expensive, while gradually lowering participation

rewards when no consensus is reached for several periods.

With this amendment, a consensus-blocking attack would

be costly and less profitable for the attackers than

participating honestly in the voting process.

VII. CONCLUSION AND FUTURE WORK

The establishment of decentralized applications and the

widespread adoption of blockchains in mainstream

financial technology applications require the refinement of

the current consensus mechanisms and approaches

involved, thus overcoming blockchain's safety, efficiency,

and scaling barriers. In our work, we developed a fully

customizable blockchain application that enabled the

integration of new technologies and the evaluation of up-to-

date mechanisms in the blockchain. We have shown how

the modeling of the burdensome blockchain data as a

distributed graph can assist protocols operations, enhance

their security, and facilitate the application of analytical

methods to the stored information through path-dependent

queries. Besides, through the tangible representation of the

data provided by graph databases such as Neo4j, we were

able to monitor the fundamental processes of the consensus

protocols and block proposal schemes developed.

Furthermore, we adapted this implementation so that it

serves the most up-to-date blockchain consensus

mechanisms. Focusing on Casper's BFT consensus

protocol, we showcased how the annotated model enhances

network’s security in deterring attacks from dynamic

validator sets by quickly pinpointing conflicting votes and

punishing the offenders. Finally, we ran a series of

simulations that tested our approach’s resilience to the most

widespread blockchain attacks. In particular, we have

examined through Cypher queries how the configuration of

the Inactivity Leak is affecting finality's recovery from a

catastrophic crash, whether a 51% attack on Casper - PoS

blockchains is possible, and how adjusting Casper's

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

VOLUME XX, 2020 13

penalties and rewards can prevent hashrate centralization

scenarios

Our simplified model allows for a lean and versitile

blockchain implementation that exploits the benefits of

graph databases over the SQL approaches in both storing

and accessing the blockchain interconnected data. At the

same time blockchain data analysis is enabled through

graph analytics and social network analysis numerous graph

representations of the stored data to accurately evaluate the

operation of the involved mechanisms as well as the

behaviours of network's agents. The promising results of

our research provide a clear direction for studying and

developing other memory efficient graph models that

optimally exploit the benefits of this technology at both

operating and analytical level. However, it is left as future

research to implement and deploy them in real blockchain

applications, which is always the final measure of

evaluation.

Concurrently, other innovations are continually being

developed in the blockchain field, which may become the

solutions to blockchain's most critical challenges. Most

notable is the "Lightning Network" [23] payment protocol,

which overlays an existing blockchain and tackles

cryptocurrencies scaling problems. The incorporation of a

graphic model into the operation of such a micropayment

system that will monitor fraudulent transactions amongst all

channels may eliminate the need for outsourcing trust to

'watchtower' nodes and, thus, expand its limitations.

It is left for future research as well to examine how the

proposed reference implementation can be applied in upper

level transaction consolidation frameworks such as the

Lightning Network and explore whether it can enhance the

security features and the analytical methods for path-

dependent queries and relationships analytics of

transactions in the blocks.

REFERENCES
[1] S. Haber and W. Stornetta, “How to time-stamp a digital document,”

Journal of Cryptology, vol. 3, no. 2, 1991.

[2] K. F. Buford, H. H. Yu, and E. K. Lua, P2P networking and
applications. Amsterdam: Elsevier/Morgan Kaufmann, 2009.

[3] G. Hileman and M. Rauchs, “2017 Global Cryptocurrency

Benchmarking Study,” SSRN Electronic Journal, 2017.
[4] J. Hendler "Web 3.0 Emerging" Computer vol. 42 no. 1 pp. 111-113

2009.

[5] N. Chowdhury, “Consensus Mechanisms of Blockchain,” Inside
Blockchain, Bitcoin, and Cryptocurrencies, pp. 49–60, 2019.

[6] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’

Tech. Rep., 2008.
[7] W. Wang, D. T. Hoang, P. Hu, Z. Xiong, D. Niyato, P. Wangm, Y.

Wen and D. I. Kim, "A survey on consensus mechanisms and mining

strategy management in blockchain networks," IEEE Access vol. 7
pp. 22328-22370 2018.

[8] D. Tapscott and A. Tapscott, Blockchain revolution: how the

technology behind Bitcoin is changing money, business and the
world. UK: Portfolio Penguin, 2018.

[9] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosba, A.

Miller, P. Saxena, E. Shi, E. G. Sirer, D. Song, and R. Wattenhofer,
“On Scaling Decentralized Blockchains,” Financial Cryptography

and Data Security Lecture Notes in Computer Science, pp. 106–125,

2016
[10] “Bitcoin Energy Consumption Index,” Digiconomist. [Online].

Available: https://digiconomist.net/bitcoin-energy-consumption.

[11] S. Kim, Y. Kwon, and S. Cho, ‘‘A survey of scalability solutions on

blockchain,’’ in Proc. Int. Conf. Inf. Commun. Technol. Converg.

(ICTC), Oct. 2018, pp. 1204–1207.
[12] J. Kwon, ‘‘Tendermint: Consensus without mining,’’ Tech. Rep.,

May 2014.

[13] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, ‘‘Hawk:
The blockchain model of cryptography and privacy-preserving smart

contracts,’’ in Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp.

839–858.
[14] I. Eyal, A. E. Gencer, E. G. Sirer, and R. van Renesse, ‘‘Bitcoin-NG:

A scalable blockchain protocol,’’ in Proc. 13th USENIX Symp.

Netw. Syst. Design Implement. (NSDI), 2016, pp. 45–59.
[15] M. Swan, Blockchain: Blueprint for a New Economy. Newton, MA,

USA: O’Reilly Media, 2015.

[16] S. King and S. Nadal, ‘‘Ppcoin: Peer-to-peer crypto-currency with
proof of-stake,’’ Tech. Rep., Aug. 2012.

[17] C. Buragohain, D. Agrawal, and S. Suri, “A game theoretic

framework for incentives in P2P systems,” Proceedings Third

International Conference on Peer-to-Peer Computing (P2P2003),

Oct. 2003.

[18] V. Buterin, “On Stake,” Ethereum Blog, Jul-2014. [Online].
Available:

https://blog.ethereum.org/2014/07/05/stake/?source=post_page.

[19] G. Wood, ‘‘Ethereum: A secure decentralised generalised transaction
ledger,’’ Ethereum Project Yellow Paper, vol. 151, pp. 1–32, Apr.

2014.
[20] V. Buterin and V. Griffith “Casper the Friendly Finality Gadget,”

2017, arXiv:1710.09437. [Online]. Available: https://arxiv.org/abs/

1710.09437
[21] M. Castro and B. Liskov, ‘‘Practical Byzantine fault tolerance,’’ in

Proc. OSDI, vol. 99, 1999, pp. 173–186.

[22] V. Buterin, D. Reijsbergen, S. Leonardos, and G. Piliouras,
“Incentives in Ethereum’s Hybrid Casper Protocol,” 2019 IEEE

International Conference on Blockchain and Cryptocurrency (ICBC),

2019

[23] J. Poon and T. Dryja, “The Bitcoin Lightning Network.” [Online].

Available: http://lightning.network/lightning-network-paper.pdf.

[24] “IBM Research: Behind the Architecture of Hyperledger Fabric,”
IBM Research Blog, 08-Feb-2019. [Online]. Available:

https://www.ibm.com/blogs/research/2018/02/architecture-

hyperledger-fabric/.
[25] M. Samaniego R. Deters "Blockchain as a service for IoT" 2016

IEEE International Conference on Internet of Things (iThings) pp.

433-436 2016.
[26] “Neo4j Database,” Neo4j Graph Database Platform. [Online].

Available: https://neo4j.com/neo4j-graph-database/?ref=home-

banner/.
[27] “Neo4j Desktop User Interface Guide,” Neo4j Graph Database

Platform. [Online]. Available: https://neo4j.com/developer/neo4j-

desktop/.
[28] NKB Group, “Ethereum releases Casper v0.1: A short description for

validators,” Medium, 15-May-2018. [Online]. Available:

https://medium.com/@theNKBGroup/ethereum-releases-casper-v0-
1-a-short-description-for-validators-3e0a7676d286

[29] V. Buterin, “Immediate message-driven GHOST as FFG fork choice

rule,” Ethereum Research, 14-Jul-2018. [Online]. Available:
https://ethresear.ch/t/immediate-message-driven-ghost-as-ffg-branch-

choice-rule/2561.

[30] I. Robinson, J. Webber, and E. Eifrem, Graph Databases: New
Opportunities for Connected Data . Sebastopol, CA: OReilly &

Associates, 2015.

[31] O. Panzarino, Learning Cypher. Birmingham, United Kingdom:
Packt Publishing, 2014.

[32] “What is SAP HANA? An unrivaled data platform for the digital

age,” SAP. [Online]. Available:
https://www.sap.com/products/hana.html?infl=32095c59-c617-45d7-

a13d-8af08c419145.

[33] “RedisGraph,” Redis Labs. [Online]. Available:

https://redislabs.com/redis-enterprise/redis-graph/.

[34] Neo4j, “openCypher,” openCypher · openCypher. [Online].

Available: http://www.opencypher.org/.

https://digiconomist.net/bitcoin-energy-consumption
https://blog.ethereum.org/2014/07/05/stake/?source=post_page
available:%20https://arxiv.org/abs/1710.09437
available:%20https://arxiv.org/abs/1710.09437
http://lightning.network/lightning-network-paper.pdf
https://www.ibm.com/blogs/research/2018/02/architecture-hyperledger-fabric/
https://www.ibm.com/blogs/research/2018/02/architecture-hyperledger-fabric/
https://neo4j.com/neo4j-graph-database/?ref=home-banner/
https://neo4j.com/neo4j-graph-database/?ref=home-banner/
https://medium.com/@theNKBGroup/ethereum-releases-casper-v0-1-a-short-description-for-validators-3e0a7676d286
https://medium.com/@theNKBGroup/ethereum-releases-casper-v0-1-a-short-description-for-validators-3e0a7676d286
http://www.opencypher.org/

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3006383, IEEE Access

14 VOLUME XX, 2020

[35] M. Needham and A. E. Hodler, Graph algorithms: practical examples

in Apache Spark and Neo4j. Sebastopol, CA: OReilly Media, 2019.
[36] C. Cachin and M. Vukolić, “Blockchain Consensus Protocols in the

Wild,” arXiv.org, 07-Jul-2017. [Online]. Available:

https://arxiv.org/abs/1707.01873
[37] T. Swanson, “How much electricity is consumed by Bitcoin, Bitcoin

Cash, Ethereum, Litecoin, and Monero?,” 2018. [Online] Available:

https://www.ofnumbers.com/2018/08/26/how-much-electricity-is-
consumed-by-bitcoin-bitcoin-cash-ethereum-litecoin-and-monero/

[38] I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of

Activity,” ACM SIGMETRICS Performance Evaluation Review,
vol. 42, no. 3, pp. 34–37, Aug. 2014

[39] Ethereum, “First release” GitHub. [Online]. Available:

https://github.com/ethereum/casper/releases/tag/v0.1.0
[40] V. Buterin, “Ethereum 2.0 Mauve Paper.” [Online]. Available:

https://www.win.tue.nl/~mholende/seminar/references/ethereum_ma

uve.pdf.

[41] V. Buterin, “A CBC Casper Tutorial,” Dec-2018. [Online].

Available: https://vitalik.ca/general/2018/12/05/cbc_casper.html.

[42] O. Moindrot and C. Bournhonesque, “Proof of Stake Made Simple
with Casper,” Stanford University, 2017. [Online]. Available:

http://www.scs.stanford.edu/17au-

cs244b/labs/projects/moindrot_bournhonesque.pdf.
[43] “Bitcoin to Neo4j,” GitHub. [Online]. Available:

https://github.com/in3rsha/bitcoin-to-neo4j.
[44] D. Mcginn, D. Mcilwraith, and Y. Guo, “Towards open data

blockchain analytics: a Bitcoin perspective,” Royal Society Open

Science, vol. 5, no. 8, p. 180298, 2018.
[45] M. Bartoletti, S. Lande, L. Pompianu, and A. Bracciali, “A general

framework for blockchain analytics,” Proceedings of the 1st

Workshop on Scalable and Resilient Infrastructures for Distributed
Ledgers - SERIAL 17, 2017.

[46] H. Kalodner, S. Goldfeder, A. Steven, M. Möser, and A. Narayanan,

“BlockSci: Design and applications of a blockchain analysis

platform,” arXiv.org, 08-Sep-2017. [Online]. Available:

https://arxiv.org/abs/1709.02489.

[47] R. Schollmeier, “A definition of peer-to-peer networking for the
classification of peer-to-peer architectures and applications,”

Proceedings First International Conference on Peer-to-Peer

Computing, Sep. 2001
[48] A B M Moniruzzaman and S. A. Hossain, “NoSQL Database: New

Era of Databases for Big data Analytics - Classification,

Characteristics and Comparison,” arXiv:1307.0191, 30-Jun-2013.
[Online]. Available: https://arxiv.org/abs/1307.0191.

[49] V. Buterin, “A Next-Generation Smart Contract and Decentralized

Application Platform,” github. [Online]. Available:
https://github.com/ethereum/wiki/wiki/White-Paper. [Accessed: 14-

May-2020].

[50] M. Bartoletti, T. Cimoli, and R. Zunino, “Fun with Bitcoin Smart
Contracts,” Lecture Notes in Computer Science Leveraging

Applications of Formal Methods, Verification and Validation.

Industrial Practice, pp. 432–449, 2018.
[51] M. Bartoletti and R. Zunino, “BitML,” Proceedings of the 2018

ACM SIGSAC Conference on Computer and Communications

Security, 2018.
[52] “US Secure Hash Algorithms (SHA and HMAC-SHA),” IETF Tools.

[Online]. Available: https://tools.ietf.org/html/rfc4634. [Accessed:

15-May-2020].
[53] V. Buterin, “Safety Under Dynamic Validator Sets,” Medium, 11-

Jun-2017. [Online]. Available:

https://medium.com/@VitalikButerin/safety-under-dynamic-
validator-sets-ef0c3bbdf9f6.

[54] McConaghy, Marques, Muller, De Jonghe, McConaghy, McMullen,

Henderson, Bellemare, and Granzotto, “BigchainDB: A Scalable
Blockchain Database.” [Online]. Available:

https://mycourses.aalto.fi/pluginfile.php/378362/mod_resource/conte

nt/1/bigchaindb-whitepaper.pdf. [Accessed: 14-May-2020].

[55] R. Hecht and S. Jablonski, “NoSQL evaluation: A use case oriented

survey,” 2011 International Conference on Cloud and Service

Computing, 2011.

[56] C. Weinberger, “Benchmark: MongoDB, PostgreSQL, OrientDB,

Neo4j and ArangoDB,” ArangoDB, 10-Mar-2020. [Online].

Available: https://www.arangodb.com/2018/02/nosql-performance-
benchmark-2018-mongodb-postgresql-orientdb-neo4j-arangodb/.

[Accessed: 14-May-2020].

[57] “Blockchain Size,” Blockchain.com. [Online]. Available:
https://www.blockchain.com/el/charts/blocks-size. [Accessed: 22-

Jan-2020].

KONSTANTINOS TSOULIAS received

his diploma from the School of Electrical and

Computer Engineering of the National
Technical University of Athens (NTUA) in

2019, after completing his thesis on

“Developing a consensus mechanism in
blockchain trees”. His research interests include

distributed systems, machine learning, social

network analysis and blockchain.

Dr. GEORGIOS PALAIOKRASSAS

received his diploma from the Dept. of

Electrical and Computer Engineering of the
National Technical University of Athens

(NTUA) in 2013 and his PhD in 2019 from the

same department, where he is currently a
postdoctoral researcher and senior Research

Associate. He has participated in numerous EU-

funded projects and his research interests
include social networks, blockchain, machine

learning, and IoT.

GEORGIOS FRAGKOS is a PhD

candidate and research assistant in the

Department of Electrical and Computer
Engineering, University of New Mexico. He

received his Diploma in Electrical and

Computer Engineering from the National
Technical University of Athens in 2018. His

main research interests include deep

reinforcement learning, game theory,
optimization, contract theory, and blockchain.

Dr. ANTONIOS LITKE has more than

18 years of experience as a professional ICT
engineer. He has participated in R&D teams of

over 15 research projects (EC and nationally

funded) and has led technical teams for highly
demanding commercial IT projects. Dr. Litke

received the diploma from the Dept. of

Computer Engineering and Informatics of the
University of Patras, Greece in 1999, and the

PhD from Electrical and Computer Engineering Department

of National Technical University of Athens in 2006 (his thesis
had been awarded by Thomaidis Foundation). He is the author

of more than 30 scientific articles with over 500 citations and

a reviewer of several international journals and conferences.
His research interests include parallel and distributed

computing, service oriented architectures, blockchains and

cybersecurity.

Theodora A. Varvarigou is a professor of

computer science at the National Technical
University of Athens. Her research interests

include parallel algorithms and architectures,

fault-tolerant computation, optimization
algorithms, and content management. Professor

Varvarigou received a PhD in computer science

from Stanford University.

https://arxiv.org/abs/1707.01873
https://www.ofnumbers.com/2018/08/26/how-much-electricity-is-consumed-by-bitcoin-bitcoin-cash-ethereum-litecoin-and-monero/
https://www.ofnumbers.com/2018/08/26/how-much-electricity-is-consumed-by-bitcoin-bitcoin-cash-ethereum-litecoin-and-monero/
https://github.com/ethereum/casper/releases/tag/v0.1.0
https://www.win.tue.nl/~mholende/seminar/references/ethereum_mauve.pdf
https://www.win.tue.nl/~mholende/seminar/references/ethereum_mauve.pdf
https://vitalik.ca/general/2018/12/05/cbc_casper.html
http://www.scs.stanford.edu/17au-cs244b/labs/projects/moindrot_bournhonesque.pdf
http://www.scs.stanford.edu/17au-cs244b/labs/projects/moindrot_bournhonesque.pdf
https://github.com/in3rsha/bitcoin-to-neo4j
https://arxiv.org/abs/1709.02489
https://medium.com/@VitalikButerin/safety-under-dynamic-validator-sets-ef0c3bbdf9f6
https://medium.com/@VitalikButerin/safety-under-dynamic-validator-sets-ef0c3bbdf9f6

