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ABSTRACT Blockchains are being recently used as a supporting technology framework 

for decentralized applications requiring functionalities such as exchange of value through 

tokens, cryptocurrency and smart contracts. In this paper, we have developed a 

decentralized application model in Python, where blockchain data are stored in a Neo4j 

graph database. Following the basic principles of Ethereum blockchain network, we 

implemented a Casper-like consensus mechanism and tested its effectiveness in achieving 

finality. For block proposing, we employed both Proof of Work and Proof of Stake 

protocols and examined how participants' incentives and consensus criteria differ 

according to each one. A major part of this work is to incorporate the graph model in the 

functionality of the blockchain and its components, while also exploiting its benefits in 

data analysis by finding relationships between data and extracting their true value. 

Through this approach, we were able to monitor and visualize changes in blockchain data 

in various use case scenarios. Lastly, we ran a series of simulated experiments to test the 

efficiency of the implemented technologies and mechanisms in preventing the most 

common blockchain attacks such as the 51% Attack, Catastrophic Crashes and Attack 

from dynamic validator sets. We show how the modelling of the blockchain data as a 

distributed graph can assist protocols operations, enhance their security, and facilitate the 

application of analytical methods to the stored information through path-dependent 

queries. 

INDEX TERMS Blockchains, Proof of Work, Proof of Stake, consensus mechanisms, 

graph databases, blockchain security, Casper, Neo4j. 

I. INTRODUCTION 

Blockchains are regarded as both public and private 

ledgers containing transactional data within their 

decentralized data structures, which form a series of tightly 

connected, timestamped blocks [1]. Their unique 

architecture makes blockchain systems immutable in the 

sense that transactions cannot be tampered once they are 

officially validated and registered in a block of the chain1. 

Based on cryptographic proof, blockchain technology 

abolishes the need for a trusted third party, enabling for 

reliable and robust decentralized applications, implemented 

 
1 A series of connected blocks that starts on the Genesis Block. 

on open and trustless networks of peers [2]. Blockchains 

have been used as the underlying technology for many 

cryptocoins and tokens [3], setting the ground for disrupting 

the future Internet [4] as well as the traditional business 

model by providing new means for exchanging value. Thus, 

the research on various features of blockchains has become 

very important in order to be able to enhance the 

technological framework with characteristics that can pave 

the way for a wider adoption of blockchain technology.  

One such feature is finality, that needs to be achieved 

through consensus protocols [5], assuring cryptocurrency 

transactions cannot be changed, reversed, or canceled after 

being published in the blockchain. Finality in Bitcoin's [6] 
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blockchain is achieved with the Proof of Work (PoW) 

protocol that requires users' CPU power to link new blocks 

of transactions to the existing blockchain, and thereby 

forming a continuous record that cannot be altered without 

redoing all the work. In the case of a fork, this process, also 

known as mining [7], encourages users to always mine on 

top of  the longest chain, since it came from the largest pool 

of CPU power and so it is the most difficult to reproduce.  

The inherent characteristics of blockchain architecture, 

like transparency, verifiability, privacy, and anonymity, 

have encouraged since then, various industries and 

operational domains to further explore its numerous 

benefits and applications [8]. Blockchain technology has 

also its drawbacks, with scalability [9], security, and energy 

consumption [10] problems being the most significant. 

Nonetheless, new protocols and solutions are continually 

being developed [11]-[14] to address these problems and to 

consolidate the blockchain technology and the 

decentralized model, potentially transforming the way 

people choose to transact globally [15]. One such example 

is the Proof of Stake (PoS) protocol [16] that attempts to 

restrict PoW's wastefulness, by using tokens instead of 

computational work, as a scarce and well-distributed 

resource to prevent cheap attacks to the blockchain. 

However, PoS stakeholders’ incentives [17] differ from 

those of PoW miners’ in a way that may compromise 

network’s security. Virtually the most profitable tactic for a 

stakeholder is to vote on every branch of the blockchain 

tree2, thus making it harder to identify the most reliable 

chain and reach a clear consensus. To tackle the so-called 

Nothing-at-Stake problem [18], Ethereum [19] developers 

created a partial consensus mechanism, called Casper [20], 

that combines the PoS research and Byzantine Fault 

Tolerance (BFT) [21] consensus theory. Casper overlays an 

existing blockchain and offers the appropriate tools and 

regulations to readjust participants' incentives [22], so that 

they always consent to the most secure chain. This 

technology is so recent that it has yet to be tested in a real 

cryptocurrency, leaving some problems associated with still 

open.  

Along with the troubleshooting, efforts are also being 

made to involve new tools and test new approaches in 

blockchain technology [23]-[25], expanding its capabilities 

and applications. In this context, and because of the high 

interconnection of blockchain data, the representation of 

blockchain as a distributed graph database is far from 

absurd. Relationships between its data, keep blockchain 

coherent, and may bear information of great analytical 

value.  Only a database that natively embraces relationships 

is able to store, process, and query those connections 

efficiently. While other databases compute relationships at 

query time through expensive JOIN operations, a graph 

database stores connections alongside the data in the model, 

allowing millions of connections per second to be traversed. 

 
2 The forking of chains in the ledger results in tree like structure rooted 

at the Genesis Block.  

In this paper, we have developed a decentralized 

application model in Python that is connected to a Neo4j 

database [26], where blockchain data are stored. Following 

the basic principles of Buterin and Griffith’s original paper 

[20], we practiced a Casper-like consensus mechanism to 

function alongside the most popular block proposal 

mechanisms: the PoW and the PoS protocols. A major part 

of our work was to incorporate Neo4j in the functionality of 

the above mechanisms and ultimately improving their 

performance. For that reason, we developed a versatile 

Graph Model for our blockchain database that allows for a 

multilevel viewing of the stored data and, by extension, 

numerous ways of accessing them. From the Neo4j Desktop 

[27] application, we were able to monitor and visualize 

changes in the deployed graph database in various use case 

scenarios. Another advantage of the blockchain graph 

database is the ease in applying analytical methods to the 

stored data and to the relationships between them with 

graph analysis tools. This innovation could solidify the 

blockchain analytics field by facilitating the evaluation of 

blockchain’s components and the behavior of the network’s 

nodes. For this reason, we ran a series of simulated 

experiments and by utilizing the annotated graph model, we 

tested the efficiency of the implemented technologies and 

mechanisms in preventing the most common blockchain 

attacks; namely the 51% Attack, Catastrophic Crashes, and 

the Attack from dynamic validator sets. 

The rest of the paper is structured as follows: In Section 

II we present the theoretical background for the tools and 

mechanisms developed in this paper. In Section III we 

discuss briefly about the published work that technically 

relates to blockchain and the ideas proposed in our paper. In 

Section IV we describe the architecture of the decentralized 

application, while details about the implementation and the 

functionality of its components are given in Section V. In 

Section VI we run our application and test the performance 

of the employed blockchain data model and the security of 

the implemented protocols against the most common 

blockchain attacks. Section VII is the conclusion of this 

paper, where we summarize our findings and suggest 

possible applications for the mechanisms we developed.  

 
II. BACKGROUND 

A. CASPER CONSENSUS MECHANISM 

Casper is a partial consensus mechanism combining Proof 

of Stake algorithm research and Byzantine fault-tolerant 

consensus theory. Casper’s operations are backed by a 

group of particular nodes, the validators [28], who are 

responsible for voting on checkpoints and finalizing 

transactions. A checkpoint is only a regular block, whose 

height in the blockchain tree is an exact multiple of a 

number.  In Ethereum, for instance, this number is set to 

100, so through the resultant checkpoint tree, validators can 

finalize every 100 blocks at once, rather than voting on 

every single block. 

Every node can become a validator by depositing at least 

the predetermined minimum amount of tokens. The number 
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of tokens deposited also represents the stake of the 

validator, which rises and falls with rewards and penalties. 

A node’s voting power is determined by his share of the 

number of tokens deposited by all validators. Hence, when 

we say “2/3 of validators”, we are referring to the deposit-

weighted fraction. To exit the validator sets and collect his 

share a node must publish a withdraw message. After 

exiting, the node is forever forbidden to re-enter the sets. 

Validators can broadcast a vote message containing four 

pieces of information: two checkpoints of the same 

subchain3 s and t, together with their respective heights h(s) 

and h(t). Therefore a vote can be represented with a link 

from a source to a target checkpoint. 

 

If at least 2/3 of the validators (by deposit) have published 

the same vote with source s and target t, then s → t is called 

a supermajority link. 

 A checkpoint c is called justified if (1) it is the root, or (2) 

there exists a supermajority link c’ → c where checkpoint 

c’ is justified.  

A checkpoint c is called finalized if (1) it is the root or (2) it 

is justified, and there is a supermajority link c → c’ where 

c’ is a direct child of c.  

 

FIGURE 1. Example of justifying and finalizing checkpoints in the 
checkpoint tree 
 

Casper's proper function precludes two checkpoints of 

different subchains from being both finalized (Figure 1). To 

achieve this, all validators must comply with the following 

rules: 

 

An individual validator must not publish two different votes 

{ 𝑠1, 𝑡1, ℎ(𝑠1), ℎ(𝑡1) } and {𝑠2, 𝑡2, ℎ(𝑠2), ℎ(𝑡2) } 

such that either:  

I. ℎ(𝑡1)  =  ℎ(𝑡2).  

Equivalently, a validator must not publish two distinct votes 

for the same target height.  

or 

II. ℎ(𝑠1)  <  ℎ(𝑠2)  <  ℎ(𝑡2)  <  ℎ(𝑡1).  

Equivalently, a validator must not vote within the span of 

his other votes. 

 

Βreach of any of the above rules results in the slashing of 

the offending validators (Figure 2); the permanent 

withdrawal from the validator sets and the deletion of their 

 
3 A series of connected blocks that starts on a fork of a chain. 

deposits. In case of a rule violation, Casper guarantees that 

all relevant evidence can be found, and the offenders can be 

identified.  

For the mathematical proof of the above proposition we 

will be working on the checkpoint tree. Given two finalized 

checkpoints xm and yn on two conflicting subchains, there 

are two distinct chains of supermajority links from a 

common starting checkpoint s (whether that is the Genesis 

Block or not) to xm and yn respectively: 

s → y0 → y1 → … → yn → yn+1  

and  

s → x0 → x1 → … → xm → xm+1 

Where, xm+1 and yn+1 are the children of xm and yn 

respectively, since xm and yn are finalized (finalization 

rule). The heights of all checkpoints xj , yi in the above 

chains should be different, otherwise rule I is violated. 

Without loss of generality we assume that h(xm) > h(yn), 

hence that h(xm) > h(yn+1), since h(xj) ≠ h(yi) . Let k be 

the lowest integer such that h(xk) > h(yn+1); then h(xk-1) < 

h(yn) (or h(xk-1) = h(yn), which again violates rule I). This 

implies the existence of a supermajority link xk-1 → xk , 

where   h(xk-1) < h(yn) <  h(yn+1) h(xk), thus violating rule II. 

If two conflicting supermajority links l1 and l2 exist, we can 

conclude that at least 1/3 of the validators violated the 

slashing conditions, since at least 2/3 of the validators have 

published l1 and at least 2/3 of the validators have published 

l2. 

 

FIGURE 2. Proof of the effectiveness of Casper's slashing conditions. 

 
In the case of a fork, miners/stakeholders are incentivized 

to always build on the branch that contains the highest 

justified checkpoint. This correct-by-construction fork 

choice rule [29], besides being the optimal strategy for 

nodes, also prevents pathological scenarios to occur; by 

following the longest chain fork choice rule, Casper can get 

“stuck” where any blocks built atop the longest chain 

cannot be finalized without some validators getting slashed. 

So, this rule is to be followed by every miner/stakeholder 

since it ensures the liveness of the consensus protocol
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B. NEO4J GRAPH DATABASE 

A graph database (GDB) [30] is a database designed to treat 

the relationships between data as equally important to the 

data themselves. Graph databases are part of the NoSQL 

databases created to address the limitations of the existing 

relational databases. This is achieved by using graph 

structures for semantic queries with nodes, edges, and 

properties to represent and store data. A graph database is 

intended to hold data without constricting them to a 

predefined model by storing connections alongside the data 

in the model, while other databases compute relationships 

at query time through expensive JOIN operations. Hence, 

accessing nodes and relationships in a native graph 

database is an efficient, constant-time operation.  

Neo4j [26] is an open-source, NoSQL, highly scalable 

native graph database that provides an ACID-compliant 

transactional backend for developing applications. This 

means that it efficiently implements the property graph 

model down to the storage level while using pointers to 

navigate and traverse the graph. Performance-wise Neo4j 

delivers consistent, real-time efficiency for multi-hop 

queries on large, interconnected datasets. Moreover, it 

offers a versatile property graph model that allows for 

fluidly evolving solutions to meet user’s requirements. 

Cypher [31], a declarative query language similar to SQL, 

but optimized for graphs, is now used by other databases 

like SAP HANA [32] Graph and Redis graph [33] via the 

openCypher project [34]. 

The property graph model of Neo4j organizes data as 

nodes, relationships and properties. Nodes are the entities in 

the graph that can hold any number of attributes (key-value 

pairs), called properties. They can also be categorized into 

labels, that each represents a specific role for the nodes 

tagged with it. Two semantically-relevant nodes can be 

linked with a directed relationship. Relationships are 

characterized by their type, and like nodes, they can too 

hold properties. Additionally, due to the efficient way in 

which they are stored, any number or type of relationships 

can be shared by two nodes without sacrificing 

performance. 

Neo4j also offers a growing, open library of graph 

algorithms [35] that are optimized for fast results. With 

little to no coding required, these algorithms reveal the 

hidden patterns and structures in the stored connecting data 

around pathfinding, centrality and community detection. 

Lastly, Neo4j Browser, a graphical user interface (GUI) 

that can be run through a web browser, allows for querying, 

visualization, and data interaction. All these capabilities 

make Neo4j the ideal tool to employ in representing, 

visualizing and analyzing the cumbersome and highly 

connected blockchain data. 

III. RELATED WORK  

A consensus protocol is a fault-tolerant set of rules that 

ensures all nodes agreement on the order in which entries 

are appended to the blockchain, despite the malicious or 

ambiguous acting of individual nodes amongst them. The 

CPU voting consensus that Nakamoto suggested with Proof 

of Work (PoW) [6] encouraged a multitude of new 

mechanisms based on proof of concepts [36] to try and 

tackle PoW's problems while maintaining a similar level of 

security. Proof of Stake (PoS), the most popular and 

energy-saving alternative to PoW [10] [37], requires 

participants to prove the ownership of the amount of 

currency, expecting a strong correlation between a node's 

wealth and its fidelity. Our application incorporates the 

above protocols as block proposal schemes and highlights 

the adjustments needed for them to work appropriately 

under a Casper-like consensus mechanism. 

Other protocols such as Proof of Activity (PoA) [38] 

combine useful elements from both PoW and PoS. 

Operating PoA requires building blocks from miners via 

PoW, which are controlled and signed by active network 

stakeholders. The hash of any new block header solved by a 

miner is mapped to one of the satoshis in the network. Then 

a procedure is followed to track its owner, who then is 

responsible for signing the new block header. This process 

is repeated N times, for the new block is published. As it 

understood, like in a PoS scheme, the more tokens a node 

possesses, the more chances he has to be elected. The 

protocol is called Proof of Activity because it also requires 

the N stakeholder to be active; otherwise, another block 

header (with different N stakeholders) will be the first to 

sign. 

Casper [20], the partial consensus mechanism is perhaps 

the most advanced PoS algorithm; it’s innovation is so new 

that it has yet to be thoroughly tested in a large scale 

environment. Recently, Ethereum’s developers announced 

the first release [39] of Casper Friendly Finality Gadget 

(FFG) and the code was made available to researchers, 

auditors and client developers, to start testing the software. 

Essentially, Casper FFG is a simplified version of a 

Byzantine fault tolerant protocol [21], with “votes” for 

checkpoints taking the place of prepares and commits.  

Shortly, Ethereum 2.0 [40] is expected to be launched, 

which will include Casper CBC [41]; an upgraded version 

of Casper FFG that will complete the transition from PoW 

to PoS consensus. However, researchers have already been 

examining the effectiveness of Casper's principles, the 

incentives involved and mechanisms through individual 

decentralized application models. Such an example is 

presented in the work of Moindrot et al. [42] where a 

simulation of a blockchain application in Python was 

developed to familiarize the reader with Casper's basic 

operations, as well as to examine the impact of latency and 

disconnected nodes in the protocol's finality. However, this 

simulation is far from a working DApp since it does not 

involve active users, and some key blockchain and Casper 

components, like consensus protocols and dynamic 

validators sets were not implemented. 

Furthermore, the Ethereum project has adopted the 

GHOST protocol, that suggests an alternative to the 

longest-chain rule of common PoW protocols; that is,
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selecting the heaviest sub tree rooted at each fork. By doing 

so, developers aim to avoid scenarios where an attacker's 

chain can grow longer without him having the majority of 

network's computing power. An example of that is when 

larger blocks are created that take longer to propagate 

through the network, thus resulting in more forks to occur. 

In that case, the Greedy Heaviest-Observed Sub-Tree rule 

proposes that those off the main chain blocks can still 

contribute to it's validity. That idea of using graphs as a 

way to optimize performance and security of distributed 

ledgers was further examined in the cryptocurrency space. 

A well-known blockchain protocol that introduces a unique 

graph based model in blockchain is IOTA's tangle. This 

protocol is entirely based on a DAG, which is used for 

storing and verifying transactions by connecting them to 

others, already confirmed. Nevertheless, this 

implementation differs in many ways from the typical 

blockchain structures since it doesn't use blocks to store 

transactions, it combines the roles of transaction issuers and 

transaction approvers and unlike most protocols it doesn't 

include monetary rewards. Acknowledging the tremendous 

benefits that graph solutions can provide in distributed 

ledgers, we propose a model, that stores and connects 

blockchain's digital entities in a Neo4j database. 

Modeling blockchain as a graph database is not a novel 

idea [43]. Several studies [44]-[46] have highlighted the 

analytical value within the blockchain data and the 

relationships between them that can be optimally exploited 

through a high-fidelity blockchain graph model. In [44] 

specifically, this was done, by parsing and deserializing the 

Bitcoin raw binary data files into a suitable format for 

importing into Neo4j. Then, they ran the annotated 

graphthrough a graph-analysis framework that uses path-

dependent Cypher queries to extract and summarize useful 

statistics. This implementation paves the way for a 

blockchain analytics field that focuses on identifying and 

even predicting behaviors in both the nodes and their 

published messages. In our paper we extend the idea of a 

graph blockchain database by also incorporating the graph 

model into the core functions of blockchain and its 

mechanics. Furthermore, we suggest a both flexible and 

lean blockchain model that negates the need for a locking-

unlocking graph mechanism by being stored alongside the 

traditional blockchain for a low memory overhead. This 

implantation intends to access data used by consensus 

protocols and block-proposal schemes at much greater 

speeds than the traditional way, ultimately resulting in 

higher performance decentralized systems. 

IV. SYSTEM OVERVIEW 

A. P2P NETWORK 

Every decentralized application is supported by a P2P 

network [47] where members can interact with one another 

without the need for a trusted authority. In our model, we 

simulate such a network by utilizing the Python Flask 

Microframework. In particular, every node is implemented 

as a separate Web application of the same structure, to 

ensure equality. For the purposes of this paper, we deployed 

the P2P network on a single machine by having each node 

run on a different port of Python's local development 

server. This implementation allowed us to uniquely identify 

each node by its port number so that it functions as the 

node's address. 

 
FIGURE 3. Transaction broadcasting sequence diagram. 

 

Communication between nodes is enabled through the 

Flask-RESTful extension; each node stores its peers' ports-

addresses and can transmit messages to them by merely 

invoking the suitable API Resources with a supported 

HTTPS method. Newcomer nodes query one or more IP 

addresses hardcoded into their scripts that act like DNS 

seeds, by storing and transmitting peers’ IP addresses. The 

procedure followed when a node broadcasts a transaction to 

the network can be visualized in the sequence diagram of 

Figure 3. 

Lastly, every peer initializes and utilizes a Neo4j 

distributed graph database, in which blockchain data are 

stored and dynamically accessed.  

B. BLOCKCHAIN GRAPH MODEL 

Representing common blockchain data in a Graph Database 

can be arranged in a forthright manner; a node can be 

labeled either as Block or as Transaction, with dedicated 

attributes in each case. Two consecutive blocks are linked 

with a "CHILD_OF" relationship, while transactions are 

connected to the Blocks they belong to, with an 

"INCLUDED_IN" relationship. Following this model, we 

can depict any data broadcasted in the network, that is 

stored in a Block and has attributes, as a separate node or 

label in the Neo4j database. 
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FIGURE 4. Blockchain database Graph Model. 

 

However, the benefits of this implementation are not 

limited to presenting data in an organized and 

comprehensible way. Neo4j offers the ability to quickly 

access stored information by utilizing graph theory 

algorithms as well as to apply analytics [48] on blockchain 

data, by executing graph algorithms through complex 

Cypher queries. Nevertheless, not all of the information is 

worth storing in the Neo4j graph database. The separation 

criteria are related to the usability of the stored data in 

blockchain functions and their analytical value. The 

efficiency of Neo4j is further optimized when the graph 

model expedites the retrieval of inaccessible native 

dataresulting in a higher performance system. 

Hence, the graph database design is not absolute but 

rather is to be considered as a versatile tool, completely 

dedicated to its blockchain, containing the information of 

value and connecting them according to the needs of its 

mechanisms and protocols. One such example could be 

calculating a user's balance, which would require finding all 

transactions that he participates in by crawling each block 

in the blockchain tree. A blockchain that values such metric 

should store and connect users’ transactions in an optimal 

way. Also, another practice might involve the handling of 

smart contracts [49][50] perhaps in an e-shop application. 

In that case a useful indicator could be the credibility score 

of a user, calculated by retrieving the contracts they were 

involved in and by considering the credibility scores of the 

other parties as well as the method of the contract’s 

resolution [51] (agreement, dispute, use of mediator etc.). 

Hence, the graph model of such an application should 

include smart contract nodes, link them with the users that 

participate in them and store a resolution method property. 

Bearing in mind the above principles, we have designed 

a graph model that facilitates the most common 

blockchain’s operations as well as those of Casper’s 

consensus mechanism, while allowing for path-dependent 

queries to be applied and information to be retrieved in a 

resourceful manner. The design presented in Figure 4 takes 

advantage of blockchain’s highly interconnected data and 

offers a simplified architecture that can be stored alongside 

the original blockchain with an additional charge of 33% 

(for additional details please check the Running the System 

subsection) in terms of space complexity, to assist the 

operation and the evaluation of its components. Our model 

classifies blockchain data into six distinct node labels. 

Users are linked to the Transactions they participate in and 

to the messages they publish. Messages are associated with 

validator activities and are categorized into deposit, 

withdraw, and slashing messages. Transactions, messages 

and votes are linked to the blocks in which they are added. 

Each Block is connected with its parent-block, while 

Checkpoints Blocks are double-labeled and additionally 

linked to the previous Checkpoint in the checkpoint tree. 

V. IMPLEMENTATION DETAILS 

A. BLOCK PROPOSAL MECHANISMS 

1) PROOF OF WORK  

In Proof-of-Work blockchains, nodes compete with each 

other to solve a cryptographic puzzle, like producing hashes 

with specific patterns. This procedure, known as mining, is 

implemented in our application and uses three main 

components: a hash function, a random number generator, 

and a winner verification method. 

Every prospective miner first initiates a subprocess for 

mining the next block. The procedure begins by 

constructing the new block for the miner’s selected chain as 

an object of class Block. For this block to be published, the 

miner must first solve it by appending random numbers to 

its header and hashing the resulted string. When an SHA-

256 hashcode [52] with a specific amount of zeros is 

produced, the block is considered solved and is broadcasted 

in the network. The number of zeros required is defined by 

the difficulty parameter, with which we can adjust the 

average block time.  

After receiving and verifying the new block, the other 

miners terminate any ongoing mining processes and update 

their local data. Python multiprocessing library allows for 

the mining process to be executed in parallel, without 

impeding the rest of the Flask Server operations. 

 

2) PROOF OF STAKE 

The Proof of Stake block proposal system, simulates the 

mining process by using   instead of computational effort, 

as proof of the block constructors’ reliability. Here, users 

who possess a larger amount of tokens have a higher 

chance of being selected, as they have stronger incentives 

to protect the network and the value of the cryptocurrency. 

In our implementation, a node can apply to become a 

stakeholder by broadcasting an HTTPS message to the 

network. Nodes of the same chain will store the received 

application with the applicant's public key and stake. The 

election process is triggered by sending a "start_pos" 

HTTPS request to one of its nodes and is essentially a 

stake-weighted random choice between applicants. If the 

"start_pos" requests are sent to randomly selected nodes, 
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FIGURE 5. New block’s validator sets’ configuration example.

eventually, the chain with the most online nodes will grow 

the longest. However, this affects neither the security nor 

the finality of the consensus protocol, since here, unlike 

PoW, chain length is not a measure of difficulty. 

Instead, we use the staking of each block to determine 

which chain was the hardest to create and thus the hardest 

to be reproduced. The problem that emerges here is that 

stakeholder incentives run counter to this security measure, 

since the optimal tactic for them is to bet on the blocks of 

every branch. Thus staking-wise, the weaker blocks are 

made indistinguishable from the stronger ones, and the 

Staking measure becomes unreliable. Casper aims to alter 

these incentives by assigning consensus to the validators. 

B. CASPER-LIKE CONSENSUS PROTOCOL 

1) DYNAMIC VALIDATOR SETS 

To achieve finality in our Proof of Stake protocol, we 

implemented a Casper-like consensus protocol, that can 

work over any block proposal scheme as well. This 

mechanism should also allow the switching of validators 

without compromising blockchain's security. Our design 

incorporates the key principles [53] laid down by Casper's 

creators into one straightforward simple implementation. 

Specifically, we suggest the use of two dynamic validator 

sets responsible for voting on checkpoints; the 

"current_front" and the "current_rear" validator sets. In 

addition to these two, we utilize the "new_front" structure 

to store the next state of the current_front validator set, thus 

greatly simplifying the process. Every block stores and 

handles these structures, recognizing in that way its 

expected voters and the future state of all three validator 

sets. A node can become or quit being a validator by 

broadcasting a deposit or a withdraw HTTPS message, 

respectively, to the rest of the network. Every block inherits 

its parent’s structures, and subsequently, depending on the 

deposits and withdrawals it includes, it adds and removes 

nodes from its new_front set. Changes in the voting 

validator sets take effect after the finalization of a 

checkpoint. So, if checkpoint C gets finalized, the next 

block B created in the same subchain, that is also a child of 

block A will have its validator sets modified as shown in 

Figure 5. 

In this way, current validators authorize the next by 

finalizing specific blocks. After a validator's withdrawal 

gets finalized, he will remain in the "current_rear" set until 

another checkpoint gets finalized. Further, by having both 

front and rear validators agree, for a checkpoint to get 

finalized, we ensure that all new validators vote in line with 

their predecessors, achieving a continuous line of consensus 

throughout the blockchain. The final measure that we need 

to adopt is preventing the out of order checkpoint 

finalization. This step is crucial for Casper's safety since 

otherwise, there can occur scenarios where conflicting 

justification and finalization votes have been sent by 

disjointed validator sets,  

and therefore it is impossible to trace and punish the 

offenders. 

2) VOTING 

Given the changes in the operation of the validator sets and 

the new security risks arising from them, we redefine a 

supermajority link, a justified and a finalized checkpoint as 

follows: 

An ordered pair of blocks (s, t), has a supermajority link, 

if both at least 2/3 of checkpoint's t "current_front" 

validator set have published votes s → t and at least 2/3 of 

checkpoint's t "current_rear" validator set of t have 

published votes s → t. 

Given an ordered pair of checkpoints (s, t), t is 

considered justified, if there is a supermajority link s → t.  

Given a checkpoint s' and its direct child t', s' is 

considered finalized, if s' is justified, there is a 

supermajority link s' → t' and all votes justifying and 

finalizing checkpoint s' are included in the subchain before 

the creation of the next checkpoint 

 

As with the implementation of the validator sets, we use 

three auxiliary data structures that are stored in each block 

and facilitate the voting process. In the front_votes and 

rear_votes structures, we store the sent links with the 
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FIGURE 6. Versatility of the Blockchain Graph Model. 
 

majority rates received, while in the "justified" list. we store 

the justified checkpoints. 

A node broadcasts a vote s → t, via a "submit_vote" 

HTTPS message. For this vote to be valid, it must contain 

the required information; "source_hash" , "source_height", 

"target_hash", "target_height", "public_key". When 

importing such a vote into a block b, a series of tasks are 

performed by the miner/stakeholder: 

i) checking that blocks b and t belong to the same 

subchain; ii) calculating the sender's stake participation in 

each of the validator sets of block t and confirms that at 

least one of them is greater than 0%; iii) adding the 

calculated percentages to the total vote rates that the s → t 

link has already received in the "front_votes" and 

"rear_votes" sets;  iv) including t in the "justified" list in the 

case of s → t being a justification link, that has achieved a 

supermajority of at least 66%. 

These data structures depict the votes included in the 

current block's ancestors and not in the whole blockchain 

tree. Hence, each block entry can be uniquely described 

only by the block's height. 

Finally, when creating a new checkpoint, the miner will 

check its stored data in order to determine whether the 

previous checkpoint in the chain got finalized. If the 

finalization supermajority link exists and the previous 

checkpoint also appears justified, we understand that all 

votes required have arrived in time and are stored in blocks 

of the same subchain. In this case, the miner notifies peers 

that the previous checkpoint is to be considered finalized 

VI. EVALUATION 

A. RUNNING THE SYSTEM 

 While blockchain owes many of its advantages in the way 

that it organizes its data, there is scope for improvement on 

accessing them. A key point of our research was to suggest 

a graph model, that abolishes the need for crawling each 

block in the blockchain and allows for the otherwise 

cumbersome information to be optimally retrieved. In this 

section, we run the decentralized application and examine 

how the employed graph model enhances the performance 

of the blockchain and its components. The Neo4j Desktop 

application we are using, runs the Neo4j Browser version 

4.0.1 and the Neo4j Server version 3.4.10, providing an 

environment to visualize dataand work on our local Neo4j 

databases. Figure 6 shows the versatility of our graph 

model, that can be traversed in multiple ways depending on 

the type of information requested. We present two instances 

in which we recorded significant performance 

augmentation by utilizing the Neo4j Graph Database; 

calculating balances, tracing offending validators.  

The calculation of a user's balance in the blockchain tree 

can be performed rapidly, by pinpointing his corresponding 

Neo4j node in the "Users" label and parsing his "To" and 

"From" relationships.  For the same calculation to be done 

along only one branch, we execute a directional paths 

finder algorithm from the final block b to the user node and 

keep all "From" and "To" relationships included in those 

paths.Our design allows each block to connect only to its 

previous block through a backwards "CHILD_OF" 

relationship. Since each block can have only one parent 

block, we can isolate a single chain from block b to the 

Genesis Block with a path consisting of “CHILD_OF” 

relationships.  

The following Cypher query returns the total number of 

tokens sent to "ADDRESS" with transactions that are 

included in the chain extending from block of hash 

“HASH” to the Genesis block: 

MATCH (b:Blocks{hash: HASH }) - [:CHILD_OF*0..]  

     -> () - [k] - (t:Transactions) - [:TO] ->   

    (u:Users{hex:'ADDRESS'})  

    RETURN SUM(t.amount) 

 

Unlike the classic blockchain structure, the graphical 

model here allows for bidirectional traversing of entities in 
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the requested path. We can evaluate and analyze any query 

through the Neo4j by looking at its execution plan: The 

PROFILE command runs the given statement while 

keeping track of how many rows pass through each 

operator, and how much each operator needs to interact 

with the storage layer to retrieve the necessary data. 

Profiling the above query reveals how the Neo4j Planner 

takes advantage of blockchain's data model and optimizes 

the match by taking the node-degree into account when 

checking for the connection, starting on the smaller side 

while caching internally. Specifically, it avoids crawling 

each block and examining the hundreds of transactions 

contained in them; instead it follows only the transactions 

that the requested node participates in.  

Casper bases its effectiveness on its ability to identify 

and punish malicious validators. In our Casper-like 

protocol, we incentivize the network's nodes to track and 

report those offenders by offering them financial rewards in 

the case of a successful slashing. Furthermore, all evidence 

for a rule violation can be discovered and recovered by any 

node, as all the sent votes are stored publicly in the 

blockchain.  

The incorporation of Neo4j into our application and the 

complex Cypher queries it allows, further facilitates the 

detection of such offending votes in the blockchain. 

Specifically, we can request all distinct pairs of conflicting 

votes sent by the same validator with two simple Cypher 

queries: 

 

MATCH (v1:Vote), (v2:Vote)  

WHERE v1.r_from = v2.r_from  

AND v1.target_height = v2.target_height 

AND ID(v1) < ID(v2)  

RETURN v1.r_from, v1, v2 

Returns all distinct pairs of votes; v1, v2, sent by the same 

validator with targets at the same height.  

 

MATCH (v1:Vote), (v2:Vote)  

WHERE v1.r_from = v2.r_from  

AND v1.target_height > v2.target_height  

AND v1.source_height < v2.source_height  

AND NOT ID(v1) = ID(v2)  

RETURN v1.r_from, v1, v2 

Returns all distinct pairs of votes; v1, v2, sent by the same 

validator, in which one vote is within the span of the other. 

 

The above queries apply to all published votes in the 

blockchain tree and not in a specific branch. The process of 

tracking offenders is greatly simplified since sent votes are 

indexed with the "Votes" label and serial block access is no 

longer required., 

If measured by traditional DB criteria, traditional 

blockchain, seems poor: throughput is only a few 

transactions per second, capacity is a few GB and most 

importantly it has essentially no querying abilities, thus 

making it unsuitable for applying statistics on its data. 

Several efforts [54] have been made to improve the 

traditional blockchain database in terms of performance, 

scalability and queryability. However, these 

implementations follow a NoSQL approach meaning that 

they store sets of disconnected aggregates, that makes it 

difficult to use them for connected data. The most common 

strategy for adding relationships to such stores is to embed 

an aggregate’s identifier inside the field belonging to 

another aggregate, effectively introducing foreign keys. 

But, this requires joining aggregates at the application level, 

which given blockchain's high interconnectivity quickly 

becomes prohibitively expensive. We find that graph 

databases optimally exploit the benefits of blockchain's 

unique architecture and create versatile data structures that 

can be traversed in real time.  

The performance evaluation of our graph tool compared 

to that of the document-oriented approach is in agreement 

with the results of several studies [55][56] that suggest the 

overall superiority of graph databases regarding querying 

time of the connected information. Specifically, in Figure 7 

we present our findings regarding the average query 

execution time for both our private blockchain application 

that follows a document-oriented database architecture and 

our Neo4j blockchain database in logarithmic scale. The 

query used in this case was a simple balance calculation for 

a specific user. To have a fair comparison, memory 

consumption in Neo4j should not exceed 13GB of RAM, 

which is what an Ethereum full-node uses. To achieve we 

set both heap and page cache to 4GB each, assuring that 

when combined with the extra memory that JVM needs to 

function correctly, Neo4j’s process memory consumption 

will not grow beyond the desired levels. 

 
FIGURE 7. Average query execution time for Neo4j and Blockchain 
databases. 

 

While that the graph model and the appropriate Cypher 

queries can simplify the procedures performed by the 

protocols and mechanisms that function in the blockchain, 

the space complexity of our implementation, should also be 

considered. We can calculate the Neo4j stored records' 

sizes as follows: 15 B for Nodes, 34 B for Relationships, 41 

B for Properties for nodes and relationships. In our graph 

model, we suggest that a Transaction consists of the 
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following contents: the Transaction Node, 3 Relationships 

(FROM, TO, IN) and 2 Properties (amount, hash). Hence a 

published Transaction occupies 1 × 15 + 3 × 34 +
2 × 41 = 199 B of disk space. Comparing this number to 

the average Transaction size in Bitcoin which is 600 B, we 

understand that storing and utilizing our graph model 

alongside the traditional blockchain data would mean a 

33% increase of the total blockchain size.  

For the computation, memory configuration depends on 

how much virtual memory will the JVM for Neo4j use at 

runtime. Thus, the more the memory allocated matches the 

size of the database, the less swapping of data will occur at 

runtime, ultimately resulting in higher performance. Storing 

the 258 GB of Bitcoin’s data [57] in our graph model would 

require almost 258 × 0.33 = 86 GB of memory. However, 

the memory used by the Neo4j instance is the collection of 

data requested by the client. For path-dependent queries, a 

precise calculation of that can be complicated since it may 

involve duplicate nodes and relationships. On the contrary, 

we can make a reasonable estimation of the memory 

required for the two simpler queries used to spot offending 

validators. In that case, we request all N pairs of votes that 

consist of one node and four properties. Hence, the memory 

required for this query to be optimally executed is 𝑁 × 𝑁 ×
(15 + 4 × 41) = 179𝑁2 B. To further reduce the space 

complexity of our implementation and improve its 

effectiveness we are exploring additional graph models and 

tools that will entirely base their operation on them. 
 
B. PREVENTING ATTACKS 

In this section we test the robustness of the mechanisms 

developed against the most renowned blockchain attacks. In 

the case of Casper, security against several types of attacks 

is provided by its nature. Casper can tolerate 1/3 of the 

validators being malicious in achieving finality; any percent 

larger than that can stop the network from finalizing any 

new checkpoints. On the contrary, its security is only 

compromised when the dishonest validators achieve 

supermajority in both validator sets; thus being able to fully 

control the finalization of new checkpoints. Sybil attacks 

are prevented as Casper operates in a Proof of Stake 

manner; the size of a validator's deposit determines his 

voting power. To further reduce the impact of multiple-

address users, Casper requires a large number of tokens 

being deposited, to become a validator.  

While we saw how the Neo4j can assist in tracking 

Casper’s offending validators, safety under other types of 

attacks is to be examined through a series of simulated 

experiments on our application. The vulnerability of PoS 

Casper systems in 51% attacks, and the optimization of 

parameters for a consensus protocol resistant in catastrophic 

crashes will be the main focal points of this section. 

The simulation process is enabled through a batch script 

that initializes nodes and performs the basic functions of 

miners and validators. The above process also provides for 

the existence of side-chains that can be created in pseudo-

random manner; that is an adjustable parameter that 

determines the possibility of a fork to occur on each block. 

The simulated results are gathered with the aid of a python 

script that executes Cypher queries to the Neo4j database, 

where the native blockchain data are stored. Thus, we once 

more showcase the benefit of the blockchain graph model 

in quickly pinpointing and extracting high-value analytics 

regarding, in this case, the evaluation the blockchain’s 

mechanisms as well as the behavior of its participants. 

 
FIGURE 7. Consensus with Fixed and Fluctuating Inactivity Leak.  

 
1) CATASTROPHIC CRASHES 
If more than 1/3 of the validators are disconnected from the 

network due to computer failures, network partitioning, or 

risky behavior, it is virtually impossible to finalize new 

blocks. In this case, the Inactivity Leak can help the 

blockchain recover, by gradually decreasing the stake of the 

offline validators and thus weakening their voting 

power.  Inactivity Leak's value can either be fixed or 

fluctuating and the money deducted from the inactive 

validators can either be erased or returned to them 

sometime after they get back online. In our study, we are 

focusing on optimizing the role of the Inactivity Leak in 

Casper's security. In other terms, penalties should be 

adjusted, so that the network can effectively and quickly 

overcome a catastrophic crash, while voting remains 

ultimately profitable for validators with short absences. 

We examine the efficacy of a fixed and a fluctuating 

Inactivity Leak in achieving consensus, after a Catastrophic 

Crash occurs, at which 50% of current validators 

disconnect. To simulate this, we initialized 1000 validators 

of which 500 were only online and able to cast a vote. The 

consensus rates on justification and finalization votes can 

be stored in the checkpoint nodes as a separate property, 

while not significantly affecting the overall space 

complexity of our Neo4j implementation, since checkpoints 

are sparsely distributed throughout the blockchain tree. In 

both cases of Inactivity Leaks, penalties are initially set to   

-1% and take place per 10 checkpoints. Should consensus 

not be reached during that period, non-fixed Inactivity Leak 

decreases by 5% until at least one block gets finalized. On
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FIGURE 8. Consensus with Fixed and Fluctuating Inactivity Leaks for subchains of varying strengths

 Figure 7 , we can observe the change in the percentage of 

active validators, justified and finalized checkpoints for a 

stable and a fluctuating (Figure 7) Inactivity Leak.  

If we now consider the existence of additional candidate 

main chains in the network, we can assume that the 

probability of a checkpoint being voted is proportional to its 

subchain's relative strength. The relative strength of a 

checkpoint or a subchain derives from the criteria that 

validators use when voting. Thus, in a PoS blockchain with 

honest validators, the relative strength of X could be 

interpreted as the total amount of tokens staked on X 

compared with that on checkpoints at the same height. 

Now, we simulate the previous voting process, while taking 

into account different probabilities of the main chain being 

voted.  

The results displayed in Figure 8 for both types of 

Inactivity Leak suggest that the fluctuating inactivity leak 

diminishes the influence that the relative strengths and the 

number of subchains have on the speed of reaching 

consensus, since in every case the first finalized block 

appear around epoch 9. In the instance of the fixed 

inactivity penalty consensus is highly dependent on the 

strength of the candidate blocks, delaying the first 

checkpoint finalization as long as 30 epochs in some cases. 

However, the acceleration of consensus that a Fluctuating 

Leak offers associates additional risk with the role of

validators, as it shrinks the time window within which 

validators can recover a crash without suffering extensive 

losses on their deposits. 

 
2) 51% ATTACKS 

The 51% attack refers to a blockchain attack performed by 

a group of miners that control more than 50% of the 

network's mining or computing power and could potentially 

control new transactions' confirmation to double-spend 

coins. Here we examine whether such an attack could be 

feasible in our Proof of Stake-Casper model and whether 

the inherent features of these mechanisms favor the Voting 

Power centralization amongst stakeholders and validators, 

respectively. 

Regarding PoS, Voting Power centralization can be 

checked using the PoS scheme we have implemented in our 

network. According to this, stakeholders have a chance of 

being selected proportionally to their share of capital. The 

winning node will be rewarded with a fixed amount of 

cryptocurrencies. In our simulation we initialized 1000 

nodes with the voting power distribution being similar to 

that of real PoS networks. Then, we initiate the stakeholder 

election process for 1,000,000 simulated blocks and check 

again for potential wealth accumulation. To calculate the 

total stake of each stakeholder in each case, we take 

advantage of the Cypher queries presented in Section A, 

which greatly simplify the process. The initial distribution 

of hashrate as well as the distribution after the election 

process is presented in Figure 9 (a) in a detailed and 

simplified form where only PoS stakeholders that possess 

more than 3% of the total tokens are shown. The two 

distributions appear almost identical after 1,000,000 blocks, 

which means that the model followed maintains any 

financial differences between the nodes of the network 

without expanding them percentage-wise. 

Like many other BFT protocols, Casper uses 1/3 as the 

maximum number of faults it can tolerate. Given n total 

nodes, of which there are f byzantine nodes, we need at 

least t nodes to agree to reach consensus. Assuming that the 

n-f nodes are split into two equally sized groups of (n - f) 

/2, we want to make sure that the influence of the byzantine 

nodes that may act arbitrarily isn't enough to achieve 

consensus. Hence t > (n - f) / 2 + f, ensuring that the two 

groups cannot decide different things and result in a safety 

failure. For liveness, we make sure that the n - f nodes can 

come to a consensus, without the cooperation of the f 

byzantine nodes. Thus (n - f ) ≥ t. By combining the two 

constraints, we get n/3 > f as the fault tolerance threshold of 

Casper. 

In this way, to adequately control Casper’s finalization 

process, the attackers would have to acquire at least 67% of 

the total deposits in both validator sets. Still, the 34% in just 

one validator set would be enough to block the network 

from finalizing any new checkpoints. Another fundamental 

parameter is that Casper's structure should be such, that it 

does not amplify economic differences between validators, 

jeopardizing the sets' decentralized character. Other than 

being the backbone of Casper’s operation the adopted 

reward-punishment system also dictates the motives in 

consensus groups and hence the possibility of centralization 
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of power in them. To underline the significance of rewards, 

we tested two different approaches in our Casper-like 

protocol: a system that encourages consensus and another 

that encourages participation.  

The results in each case were gathered with the aid of 

Cypher queries, for quickly pinpointing each validator’s 

votes through the “Vote” label and retrieving their voting 

percentages in each set from the node’s properties. While 

the initial distribution of PoS voting power depicted 

previously can be set similar to that of the real PoS 

cryptocurrencies, the novelty of Casper's ideas imposes 

several restrictions when selecting appropriate data inputs. 

However, the fact that Ethereum requests 1500 ETH as the 

minimum validator's deposit, a demand that only 5000 

addresses can fulfill at the moment, in combination with the 

risk associated with being a validator allows for a good 

estimation of the front and rear sets sizes. By extension, the 

distribution of voting power can be directed by that of the 

stake distribution of the top 5000 Ethereum addresses. 

(a) Example of decentralized voting power distribution in PoS before and 

after 1,000,000 blocks 

 

 
(b) Example of centralization of voting power in a validator set before and 
after 2,000 checkpoints 

FIGURE 9. Examining distribution of power in consensus groups. 

 

To recover from a dead-end situation where consensus 

was not reached for several checkpoints, the protocol can 

favor groups of validators with consensus rates that exceed 

a regulated percentage, through bonus rewards. This 

scheme suggests the gradual tradeoff between system's 

liveness and security where the strongest consensus group 

will eventually prevail over the rest of the set. However, 

rewarding consensus underlies a voting power 

centralization danger. By implementing this scheme for 250 

validators and running it for 2000 checkpoints, as 

demonstrated in Figure 9 (b), we saw, that even with all 

validators being honest, those with larger deposit shares are 

more likely to receive this bonus, and further increase their 

power. Thus, economic differences are amplified 

exponentially. Moreover, those powerful nodes would have 

a stronger influence on the rest of the validators who would 

be incentivized to follow the majority to reach consensus 

and earn the bonus. 

The danger of voting power centralization, lurking in 

consensus-enforcing reward systems leads us to the 

participation valued approach of the original Casper. This 

can be achieved with a deposit-equivalent reward given to 

those who have cast at least N votes during a predetermined 

period with targets of height > h, where h is the height of 

the highest justified checkpoint, so that the broadcasted 

votes are relevant with the checkpoint finalization process. 

By doing so, powerful validators have no advantages over 

the rest of the set as long as everyone participates in the 

voting process. This rewarding system is deceptively more 

similar to that of the PoS than the previous one as long as 

Casper is responsible for the finalization, the only 

difference being that in PoS non-participating nodes face 0 

projected profits instead of Casper’s negative penalties. 

Finally, to resolve dead-ends, validator's minimum deposit 

is made expensive, while gradually lowering participation 

rewards when no consensus is reached for several periods. 

With this amendment, a consensus-blocking attack would 

be costly and less profitable for the attackers than 

participating honestly in the voting process.  

VII. CONCLUSION AND FUTURE WORK 

The establishment of decentralized applications and the 

widespread adoption of blockchains in mainstream 

financial technology applications require the refinement of 

the current consensus mechanisms and approaches 

involved, thus overcoming blockchain's safety, efficiency, 

and scaling barriers. In our work, we developed a fully 

customizable blockchain application that enabled the 

integration of new technologies and the evaluation of up-to-

date mechanisms in the blockchain. We have shown how 

the modeling of the burdensome blockchain data as a 

distributed graph can assist protocols operations, enhance 

their security, and facilitate the application of analytical 

methods to the stored information through path-dependent 

queries. Besides, through the tangible representation of the 

data provided by graph databases such as Neo4j, we were 

able to monitor the fundamental processes of the consensus 

protocols and block proposal schemes developed. 

Furthermore, we adapted this implementation so that it 

serves the most up-to-date blockchain consensus 

mechanisms. Focusing on Casper's BFT consensus 

protocol, we showcased how the annotated model enhances 

network’s security in deterring attacks from dynamic 

validator sets by quickly pinpointing conflicting votes and 

punishing the offenders. Finally, we ran a series of 

simulations that tested our approach’s resilience to the most 

widespread blockchain attacks. In particular, we have 

examined through Cypher queries how the configuration of 

the Inactivity Leak is affecting finality's recovery from a 

catastrophic crash, whether a 51% attack on Casper - PoS 

blockchains is possible, and how adjusting Casper's 
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penalties and rewards can prevent hashrate centralization 

scenarios 

Our simplified model allows for a lean and versitile 

blockchain implementation that exploits the benefits of 

graph databases over the SQL approaches in both storing 

and accessing the blockchain interconnected data. At the 

same time blockchain data analysis is enabled through 

graph analytics and social network analysis numerous graph 

representations of the stored data to accurately evaluate the 

operation of the involved mechanisms as well as the 

behaviours of network's agents. The promising results of 

our research provide a clear direction for studying and 

developing other memory efficient graph models that 

optimally exploit the benefits of this technology at both 

operating and analytical level. However, it is left as future 

research to implement and deploy them in real blockchain 

applications, which is always the final measure of 

evaluation. 

Concurrently, other innovations are continually being 

developed in the blockchain field, which may become the 

solutions to blockchain's most critical challenges. Most 

notable is the "Lightning Network" [23] payment protocol, 

which overlays an existing blockchain and tackles 

cryptocurrencies scaling problems. The incorporation of a 

graphic model into the operation of such a micropayment 

system that will monitor fraudulent transactions amongst all 

channels may eliminate the need for outsourcing trust to 

'watchtower' nodes and, thus, expand its limitations. 

It is left for future research as well to examine how the 

proposed reference implementation can be applied in upper 

level transaction consolidation frameworks such as the 

Lightning Network and explore whether it can enhance the 

security features and the analytical methods for path-

dependent queries and relationships analytics of 

transactions in the blocks. 
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