
This paper is included in the Proceedings of the
16th USENIX Symposium on Operating Systems

Design and Implementation.
July 11–13, 2022 • Carlsbad, CA, USA

978-1-939133-28-1

Open access to the Proceedings of the
16th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by

SparTA: Deep-Learning Model Sparsity
via Tensor-with-Sparsity-Attribute

Ningxin Zheng, Microsoft Research; Bin Lin, Microsoft Research and Tsinghua
University; Quanlu Zhang, Lingxiao Ma, Yuqing Yang, Fan Yang, Yang Wang,

Mao Yang, and Lidong Zhou, Microsoft Research
https://www.usenix.org/conference/osdi22/presentation/zheng-ningxin

SparTA: Deep-Learning Model Sparsity via Tensor-with-Sparsity-Attribute

Ningxin Zheng1*, Bin Lin1,2*, Quanlu Zhang1, Lingxiao Ma1, Yuqing Yang1, Fan Yang1, Yang Wang1,
Mao Yang1, Lidong Zhou1

1Microsoft Research, 2Tsinghua University

Abstract
Sparsity is becoming arguably the most critical dimension

to explore for efficiency and scalability, as deep learning mod-
els grow significantly larger and more complex. After all,
the biological neural networks, where deep learning draws
inspirations, are naturally sparse and highly efficient.

We advocate an end-to-end approach to model sparsity
via a new abstraction called Tensor-with-Sparsity-Attribute
(TeSA), which augments the default Tensor abstraction that
is fundamentally designed for dense models. TeSA enables
the sparsity attributes and patterns (e.g., for pruning and quan-
tization) to be specified, propagated forward and backward
across the entire deep learning model, and used to create
highly efficient, specialized operators, taking into account the
execution efficiency of different sparsity patterns on different
(sparsity-aware) hardware. The resulting SparTA framework
can accommodate various sparsity patterns and optimization
techniques, delivering 1.7x∼8.4x average speedup on infer-
ence latency compared to seven state-of-the-art (sparse) solu-
tions with smaller memory footprints. As an end-to-end model
sparsity framework, SparTA facilitates sparsity algorithms to
explore better sparse models.

1 Introduction

As deep neural network (DNN) models become large and
complex, they are inevitably getting sparse (or made sparse)
for efficiency, just as manifested in the highly sparse biologi-
cal neural networks [89]. A DNN model is usually modeled
as a data flow graph (DFG), where each node is an operator
with one or multiple input and output tensors. Model sparsity
involves introducing some sparsity patterns on the tensors;
for example, to quantize some tensors with lower precision
(e.g., 16 to 8-bit); to prune the model by setting the value
of some (or all) parts of some tensors to zero (e.g., block

*: Equal contribution.

sparsity [61, 63] or fine-grained sparsity [43, 54, 55]); or to
apply the combination of pruning and quantization to a model.
With careful pruning and quantization, a DNN model can be
compressed into a smaller memory footprint without losing
too much accuracy. With DNN operators customized for the
sparsity patterns, the resulting model will, hopefully, come
with a lower inference latency.

Unfortunately, deep learning systems are not yet effective
in exploiting sparsity: the increase in sparsity might not trans-
late into actual gains in efficiency for a variety of reasons.
First, the computation kernels for general sparse operations
remain far from optimal. For example, cuSPARSE [3], the
CUDA library for sparse matrix operations, has been shown
to underperform cuBLAS, its dense counterpart, even when
the sparsity of the matrices reaches 98% (Table 1). Second, as
DNN computation usually takes multiple stages, the sparsity
pattern might vary significantly across stages, making it hard
to develop sparsity-aware optimizations for end-to-end gains.
Finally, any effective sparsity-aware optimization might in-
volve additional support across the vertical stack, from the
deep learning framework, compiler, optimizer, operators and
kernels, and all the way to hardware. Insufficient support at
any of the layers could lead to inefficiency.

We therefore propose SparTA, a new framework that treats
sparsity as a first-class citizen, with the following design prin-
ciples. The design is customizable and extensible to accom-
modate new innovations on model sparsity; it is end-to-end
and covers the whole-stack, rather than being limited to one
operator or to one layer; it aims for extreme performance with-
out sacrificing general applicability; it can facilitate existing
sparsity algorithms to explore sparse models more efficiently.

At the core of SparTA is a new abstraction, Tensor-with-
Sparsity-Attribute or TeSA, which augments the standard ten-
sors with attributes to describe sparsity properties and patterns.
Examples include low-precision weights, block (structured)
sparsity, and fine-grained (unstructured) sparsity. A set of
TeSA propagation rules guides the forward and backward
propagation of sparsity attributes for end-to-end coverage.
The rules can either be defined by the proposed TeSA algebra,

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 213

Table 1: Speed of matrix multiplication (1024×1024×1024)
in cuSPARSE and cuBLAS on NVIDIA 2080Ti (unit: us).

Sparsity Ratio 50% 90% 95% 99%
cuSPARSE 1652.5 633.9 463.0 181.7

cuBLAS 208.3 208.3 208.3 208.3

or be inferred in a probabilistic way (§3.2).
With the sparse attributes in TeSA, SparTA can generate

an efficient execution plan, taking into account the sparsity-
aware hardware and specific sparse operators/kernels in cer-
tain sparsity patterns and conditions. SparTA may transform
an execution plan to decompose complex sparsity attributes
into a combination of simple ones with known effective opti-
mizations. In the execution plan, SparTA can perform code
specialization to generate efficient kernels for simple and reg-
ular sparse attributes, instead of resorting to generic but less
efficient sparse kernels. This is how SparTA achieves extreme
efficiency without sacrificing generality (§3.3).

Due to the whole-stack support (all the way to the codegen
on accelerators), SparTA is able to provide the ground-truth
performance metrics (e.g., latency) that can help evaluate
different execution plans given a TeSA with fixed sparsity
attributes and also offer valuable feedback for practitioners to
search for the set of sparsity attributes with the ideal tradeoff
between performance and accuracy (§5.4).

SparTA is highly customizable and extensible. With TeSA,
one can define new sparsity properties and patterns for new
ways of exploiting sparsity, provide new TeSA propagation
rules, and incorporate new sparsity-aware operators, kernels,
and (sparsity-aware) hardware accelerators.

We have implemented SparTA based on Rammer [60], a
state-of-the-art open-source DNN compiler with no special
support for sparsity. We extensively evaluate SparTA on three
popular DNN models with four representative sparsity pat-
terns on three accelerators (i.e., CUDA GPU, ROCm GPU,
Intel CPU). Our evaluation shows that SparTA achieves up
to 8.4x average speedup on model inference latency with less
memory consumption, compared to seven state-of-the-art so-
lutions (§5). We have also used SparTA to speed up sparse
DNN model training and achieved more than 2x speedup than
previous solutions (§5.5). By open sourcing SparTA1, we
hope that this work can bring the community together in this
extensible and unified framework to accelerate innovations
on model sparsity.

2 Background and Motivation

The size of deep neural networks grows significantly over the
past years [25, 37], which incurs large inference latency and
heavy memory burden. Model sparsity is arguably the most
critical dimension to explore for efficiency and scalability.

1Code available at https://github.com/microsoft/SparTA

T2
Batch
Norm ReLU

Propagated attributes
Initial attributes

WT

Matmul

W5

T5 T6

W3

T3 T4T1

W1 W2

Matmul Matmul

Figure 1: The sparsity attribute of one tensor can be propa-
gated along the deep learning network.

Various forms of sparsity. Deep learning model sparsity is
an active and extensively studied research topic. Currently,
there are various sparsity patterns being studied. Structured
(coarse-grained) sparsity, including channel-granularity spar-
sity, and block sparsity [56, 59, 61, 63], involves pruning a
channel or a sub-block of tensors (e.g., weight or activation
tensor) associated with some operators. With unstructured
(fine-grained) sparsity, any element of a tensor [43, 54, 55]
might be pruned. Quantization algorithms represent models at
different levels of precision (e.g., binarized models [31], 8-bit
models [52, 92]), and even with different, mixed precision
across neural network layers [36, 57, 77] or within a single
tensor [66, 84]. Some research further combines pruning and
quantization in order to achieve high accuracy under the strict
latency and memory constraints [42, 74, 75, 78, 83, 90]. Over-
all, pruning and quantization have been shown effective in
reducing the size and computation complexity of certain deep
learning models, sometimes by more than 10 times, without
losing much accuracy [42, 76].
The myth of FLOPs. Model sparsity does not translate
directly into performance benefits. The existing practice of
using “proxy metric” (e.g., FLOPs, or Floating point opera-
tions) to evaluate the effect of their proposals such as model
inference latency is flawed and leads to inaccurate results. For
example, when an operator’s weight is pruned by 50% with
fine-grained sparsity, even though in theory its FLOPs can
be reduced by half, the actual inference latency may become
higher with a default sparse kernel (§5.3).

One reason is the sub-optimal implementation of current
generic sparse kernels. A generic sparse kernel tends to ap-
ply a few default sparse encoding schemes (e.g., Compressed
Sparse Row [26]) to any sparse tensors. This may miss opti-
mization opportunities in a tensor with a specific sparsity pat-
tern, such as structured sparsity. As a result, a generic sparse
kernel library like cuSPARSE [3] can outperform cuBLAS,
its dense counterpart [2], only in some extreme sparse case
(98%), as shown in Table 1. This motivates the need to find a
general framework to implement specialized kernels tailored
for individual sparsity schemes.
The diminishing end-to-end returns. Sparsity algorithms
often focus on exploring the sparsity of a certain DNN op-
erator (e.g., convolution [64]). However, when placed in an
end-to-end deep learning model, the sparsity pattern across
the whole model can be impacted by each of the operators
in the model. This may introduce sophisticated sparsity pat-

214 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

DNN Model (DFG)

Initial Tensor
Sparsity Attribute

Tensor Sparsity
Attribute

Propagation

Propagation
Rules

Pruning Rule
DNN Model (DFG) with

Tensor Attribute

Quantization
Rule

Attribute Propagation

Final Executable DNN Model

Execution Plan Generation &
Transformation

TeSA-Aware Code Specialization

Code Generation

Traditional DNN compiling pass

Figure 2: The system architecture of SparTA.

terns that are difficult for existing solutions to understand
or optimize, leading to diminishing end-to-end return from
sparsity.

In Figure 1, tensor W2 illustrates a fine-grained sparsity
pattern (63% sparsity). Such an initial sparsity pattern of W2
incurs ripple effects. W2 would propagate its sparsity attribute
to the down-stream and up-stream tensors, including W1, T2,
T3, T4, T5, and W5. For example, because the second column
of W2 is pruned, the second column of T3 is destined to be all
zero, hence can be pruned too (as T2×W2 = T3). Likewise,
as the third row of W2 is pruned, the third column of T2 can
also be pruned. It is therefore desirable for a deep learning
compiler to understand such propagation of sparsity so as for
further sparsity-aware optimization.
Across-stack sparsity innovations in silos. Due to the
above limitations, sparsity innovations either are constrained
to individual operators and evaluated with proxy metrics with-
out knowing the end-to-end effects, or have to be implemented
manually on a few neural models, difficult to be ported to other
models [42, 77]. More problematically, individual solutions
are hard to be extended to or combined with other proposals.
All these motivate SparTA, a common foundation to facilitate
sparsity innovations, which can be evaluated end-to-end.

3 SparTA Design

Figure 2 summarizes the overall architecture of SparTA. At
the core of SparTA is the TeSA abstraction, which augments
the existing tensor abstraction with sparsity attribute (§3.1).
An algorithm designer can specify the sparsity patterns in
selected tensors of a deep learning model as “Initial Tensor
Sparsity Attribute”.

Given the initial sparsity attribute, SparTA performs at-
tribute propagation to infer the sparsity attributes of all other
tensors in the deep learning model, according to the propaga-
tion rules (§3.2). Sparsity attribute propagation exposes more
optimization opportunities than the original sparse tensors, as
shown, for example, in Figure 1.

After attribute propagation, SparTA runs a multi-pass com-
pilation process to generate efficient end-to-end code (§3.3).
Compared to a traditional DNN compiler, SparTA conducts

two additional compilation passes to exploit model sparsity
fully. The first pass transforms the original execution plan of a
DNN model into a new one that takes advantage of the given
sparsity patterns. A further compilation pass then performs
sparsity-aware code specialization. The awareness of tensor
sparsity patterns allow SparTA to generate highly customized
code. This process may be iterated for further improvement.

Finally, with the final compiled code, model designers can
profile the DNN model to obtain authentic performance met-
rics, including memory consumption and inference latency.
Given the feedback, model designers may further update the
sparsity attributes in some tensors and repeat this process
iteratively to find the best tradeoff. Thus SparTA enables a
feedback loop, facilitating the innovation in model sparsity.

3.1 The TeSA abstraction
TeSA augments a traditional tensor with an additional tensor
with the same shape, where each element is a scalar value, rep-
resenting the sparsity attribute of the corresponding element
in the original tensor. This allows a user to specify arbitrary
sparsity patterns in a tensor, a key requirement of the evolving
research on model sparsity [40, 47, 72]. Figure 3 shows an ex-
ample of TeSA. The left shows the original dense tensor. The
right shows the corresponding sparsity attribute, where one
prunes the second row in the tensor, uses 8-bit to quantize the
bottom-right element and 4-bit for the remaining elements.
This example shows that TeSA can unify tensor quantiza-
tion and pruning in one abstraction. The unified abstraction
facilitates the co-optimization of pruning and quantization,
e.g., picking the right block size to cover (represent) the re-
maining (non-pruned) elements while aligning with low-bit
hardware instructions (e.g., wmma [5]). With TeSA, SparTA
can understand the sparsity pattern at compile time, which
enables further optimizations. Note that the sparse attribute
will only be used in the compile phase, thus it does not impose
additional resource burden to the actual compute phase.

3.2 Sparsity Attribute Propagation
The number of tensors in a deep learning model is usually
large. A user can only set the sparsity attribute for a subset
of the tensors. To maximize end-to-end sparsity, SparTA per-
forms attribute propagation along the DFG of the DNN model

Values Sparsity Attribute

TeSA: Tensor with Sparsity Attribute

0.4

0.0 0.0

0.5

1.9

4 4 4

0 0 0

4 4 8
4: unit4
8: unit8
0: pruned

0.6

0.5 0.7

0.0

Figure 3: An example of TeSA. Sparsity Attribute denotes
the sparsity pattern, including quantization (4 means uint4, 8
means uint8) and pruning (0 means the element is pruned).

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 215

Algorithm 1: TeSA attribute propagation.
Data: G: DFG of TeSA annotated DNN model.
Result: G with updated TeSAs.

1 Function Propagate(G):
2 S = Set(AllNodesOf(G));
3 while S 6= /0 do
4 N = S.PopOne() ; /* can start from any node */

/* Is (Os) is node N’s input (output) TeSA */
5 Is, Os = TeSAOf(N);
6 Iupdated , Oupdated = PropOneNode(N, Is, Os);
7 foreach T ∈ (Iupdated ∪Oupdated) do
8 B = NeighborNodesOf(T);
9 S.Insert(B.Remove(N));

10 return G;

Matmul

W1 × W2

(a) (b) (c)

W2W1

W3

Matmul Matmul

W2W1

W3

W2W1

W3

W1 × W2
W1 × W2

Initial sparsity attributes Resulting sparsity attributes Propagation direction

Figure 4: The propagation of sparsity attribute. The gray
blocks are propagated sparsity attributes.

to derive the TeSA of other tensors, shown in Algorithm 1.
Given a node, if the TeSA of any input or output tensor of a
node is updated (TeSAOf in Line 5), PropOneNode (Line 6)
updates the TeSA of other tensors associated with this node,
according to a certain propagation rule (as discussed later, the
propagation could be bidirectional). The propagation repeats
until no TeSA requires further update.

Note that if being propagated multiple times, a sparsity
attribute will be updated to increase the sparsity until con-
vergence. Multiple pruning updates lead to the union of the
pruned elements in all the updates (The tensor W3 in Fig-
ure 4(c) is an example). For quantization, the attribute will be
converged to the fewest quantization bits (or 0-bit, i.e., being
pruned). As each propagation monotonically increases spar-
sity and both the propagations of pruning and quantization
are commutative and associative, Algorithm 1 is guaranteed
to terminate.
Intra-operator propagation. The propagation behavior of
PropOneNode varies across different type of operators and at-
tributes. In Figure 4(b), the pruned element [0,0] in tensor W3
cannot propagate to W1 and W2 through the operator Matmul,
while it does propagate to upstream tensor if the operator is
element-wise computation like ReLU. Propagation could be
bidirectional. Figure 4(a) shows that the input W2 can affect
the output W3 and another input W1. And in Figure 4(b), W2
becomes sparse due to the TeSA of the output W3.

The sparsity attribute of the quantization type propagates

Type Computation Computation in TeSA Algebra
Unary

f (x)⇒ y
sin,cos,

|x|,ReLU, . . .
(x = φ)→ (y = φ)
(x = α)→ (y = α)

Binary
f (x,y)⇒ z

+,− ((x = φ)∧ (y = φ))→ (z = φ)
((x = α)∨ (y = α))→ (z = α)

×,÷,xy ((x = φ)∨ (y = φ))→ (z = φ)
((x = α)∧ (y = α))→ (z = α)

Table 2: TeSA algebra on a set of attribute values. φ and α

represent pruned and non-pruned element respectively.

differently. If an output tensor has a low precision (e.g., 4bit)
while the input tensor’s precision is high (e.g., 16bit), the
input may use fewer quantization bits with little impacts on
output (i.e., information bottleneck [73]).

Next, we show two propagation rules used by SparTA for
pruning and quantization attribute. Note that it is possible
to extend PropOneNode to support more rules as shown in
line 27-line 36 of Algorithm 2. New propagation rules can be
registered and invoked in PropOneNode.
Pruning rule. The propagation of pruning attributes depends
on the computation logic of an operator (e.g.,+,× in Matmul).
To capture such property, SparTA defines a TeSA algebra that
maps the an operator’s element-wise computation to a set
with two elements, {pruned, non-pruned}. The TeSA algebra
is shown in Table 2. Given an input TeSA, its output TeSA
can be computed using the TeSA algebra, following the same
computation flow of the operator. Note that Table 2 can be
extended to support new operators.

SparTA also proposes Tensor Scrambling, a probabilistic
propagation rule that handles black-box or complex opera-
tors, where the detailed computation logic is unavailable or
unclear. This rule derives the pruned elements of a tensor by
scrambling the values of other related tensors. Specifically,
the rule sets the pruned elements in the input tensor to zeros,
and assigns random values to the remaining elements (i.e.,
scrambling). It then runs the operator to obtain its output
tensor (assuming at least the dense version of the operator is
available). By repeating this process enough times (see §5.2),
the rule treats those elements that always stay zero as pruned
elements in an output tensor.

In addition, the sparsity also propagates from the output
to the input, or from one input tensor to another. To achieve
this, SparTA leverages the auto differentiation (AD) of DNN
computation. An operator’s backward operator is also avail-
able for the back-propagation in the AD. Let I1...n and O1...n
denote an operator’s inputs and outputs respectively. Its back-
ward operator’s inputs are I1...n and gO1...n, with its outputs
being gI1...n, where the prefix g denotes the gradient of the
corresponding tensor. According to AD’s property, gIi and
gOi should have the same TeSA of Ii and Oi (both shape and
value). To infer the TeSA propagated from tensor Ii (or Ot) to
I j, SparTA applies TeSA algebra or Tensor Scrambling to the
backward operator: using the TeSAs of I1...n and gO1...n as the
input, SparTA applies either rule to compute (PropOneNode)

216 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Algorithm 2: TeSA attribute propagation rules.
Data: N: a node in DFG, Is: node N’s inputs, Os: node N’s outpus.
Result: Updated input/ouput TeSAs after propagation on N.

11 Function PruningPropRule(N, Is, Os):
12 Supdated = /0;
13 foreach T ∈ (Is ∪Os) do
14 Tupdated = TensorScrambling(N, (Is ∪Os)\T);
15 if Tupdated != T then
16 Supdated .Update(Tupdated);
17 return SplitToIsOs(Supdated);
18 Function QuantizationPropRule(N, Is, Os):
19 Supdated = /0; S = (Is ∪Os);
20 Dcalib = GetCalibrationDataOf (N);
21 foreach T ∈ (Is ∪Os) do
22 Tupdated = LowerBitAndFinetune(N, S, T , Dcalib);
23 if Tupdated != T then
24 S.Update(Tupdated);
25 Supdated .Update(Tupdated);
26 return SplitToIsOs(Supdated);
27 RegisterPropRule(PruningPropRule);
28 RegisterPropRule(QuantizationPropRule);
29 Function PropOneNode(N, Is, Os):
30 Iupdated = Oupdated = /0;
31 foreach RegisteredPropRule do
32 Iproped ,Oproped = RegisteredPropRule(N, Is, Os);
33 Is.Update(Iproped); Os.Update(Oproped);
34 Iupdated .Update(Iproped);
35 Oupdated .Update(Oproped);
36 return Iupdated , Oupdated ;

gI j’s TeSA, which has the same shape and value of that of I j.
We use Operator Y = AX +B as an example to illustrate

output-to-input and input-to-input propagation, where Y is
output tensor, and A, B, and X are input tensors. To derive the
TeSA of A, B, X , we take the derivative of the operator with
respect to A, B, and X, i.e., gA = gY ×XT , gB = gY , gX =
AT ×gY , respectively. The sparsity propagation from output
tensor Y to input tensor A uses gA= gY×XT . gY has the same
TeSA as Y . Given the TeSA of Y and X , gA’s TeSA can be
inferred using either TeSA algebra or Tensor Scrambling. The
propagation from X to A also uses this backward computation,
which is input-to-input propagation. Similarly, the TeSA of
B and X can be inferred from Y using gB = gY and gX =
AT ×gY , respectively. It is obvious from gB = gY that B has
the same TeSA as Y .

The propagation rule of pruned elements can be realized in
line 11 of Algorithm 2. Every input/output TeSA of node N
is computed (line 14), i.e., propagating the sparsity in other
TeSAs (i.e., (Is∪Os)\T) to this TeSA (i.e., T). This function
returns the updated input and output TeSAs separately (i.e.,
line 17). Note that here Tensor Scrambling can be replaced
with tensor algebra.
Quantization rule. For propagation of quantization at-
tributes, the key is to find tensors with unnecessarily high
quantization precision. SparTA defines a quantization rule
(line 18 of Algorithm 2) that borrows the idea of knowledge
distillation [45,46] to identify such tensors. That is, to identify
whether the information passed through an operator can be

Operator

Execution Plan
Transformation

TeSA Code
Specialization

Kernel
Implementation

Weight
()

Input
()

X

X X

void matmul_block_sparse_uint8(
float *A,float *B, float *C){

… …
}

void matmul_sparse_float32(
float *A,float *B, float *C){

… …
}

8 bits values 32 bits values

Figure 5: Two-pass compilation to generate an efficient kernel
for an operator (MatMul).

distilled into a lower precision with acceptable information
loss. Since the information loss can be measured through the
operator’s input and output tensors, we first perform inference
on the corresponding DNN model using train/test dataset, and
collect the resulting input and output tensors of that operator
to construct calibration data (line 20). Next, we gradually
reduce the quantization precision (e.g., 32-bit to 16-bit) of
one tensor of this operator while keeping other tensors un-
changed. The operator is then quantized and fine-tuned using
the calibration data under the new precision. The fine-tuning
is to minimize Mean Squared Error (MSE) between the out-
put tensors in calibration data and the output tensors of that
operator after lowering the precision. If the drop of model ac-
curacy is smaller than a predefined threshold (e.g., 1% in our
experiment), the new quantization attribute of that operator
is accepted (line 22). The process repeats for other tensors in
the operator, until all tensors are evaluated. To reduce the cost
of collecting calibration data, SparTA works through all the
operators in a DNN model in a topological order and caches
the activations computed in earlier quantization propagations.
Collecting an operator’s calibration data only needs partial
inference from the nearest cached activations to this operator.
For example, consider a sequential model with two layers
La and Lb. The propagation on La has collected its output
activations in its calibration data. When working on Lb, its
calibration data can be collected by doing partial inference
from the collected output activations of La. Our evaluation
results in §5.2 show the effectiveness of this propagation rule.

3.3 Code Generation with TeSA
After attribute propagation, tensors in the DNN model may
show a mixture of different sparsity patterns [42, 57, 74, 84].
Such complex patterns make it difficult to generate efficient
kernel code. SparTA therefore transforms a tensor with a
complex sparsity pattern to multiple tensors, each with a sim-
pler sparsity pattern. Correspondingly, SparTA rewrites the
execution plan of the associated operator to accommodate

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 217

new operators that compute the transformed tensors. Finally,
SparTA performs code generation for the transformed execu-
tion plan, with sparsity-aware specialization.

Figure 5 shows an example of such a two-pass compila-
tion process for Matmul. The weight tensor W is a tensor
with a mixed precision, where two structured blocks use 8bit
quantization and one fine-grained element uses 32bit. SparTA
transforms W into W1 and W2, each using a simpler quantiza-
tion scheme. Consequently, two operators are introduced to
compute W1× I and W2× I, respectively, using the hardware
instructions fit for the specific sparsity attribute. As a result,
the original execution plan with one operator is transformed
into a new plan that requires more tensor operations.
Execution-plan transformation. This compilation pass
transforms a tensor with a complex sparsity pattern to “regular”
(simple) sparsity patterns, which facilitates further optimiza-
tions in later passes. In SparTA, a regular sparsity pattern
means the TeSA of a tensor shows only one type of quantiza-
tion attribute and one block size of pruning attribute.

The detailed execution plan transformation for a DNN
model is performed operator-by-operator, shown in Algo-
rithm 3. For simplicity, we assume the operator has m in-
puts and a single output. The process starts from the op-
erator’s input and output TeSAs, each of which could be
transformed to one or multiple TeSAs using TransformTeSA.
Correspondingly, the operator is transformed to |To|∏m

i=1 |Ti|
sub-operators, which are the Cartesian product of those de-
composed TeSAs. The sub-operator usually has the same
computation logic as the original operator (e.g., the operators
that can be expressed with Einstein summation [7]), an ap-
proach that has also been taken in the context of DNN model
partitioning [82]. The system performs code generation for
each sub-operator (line 45), profiles the resulting kernel in the
real hardware, and records the profiled result (line 47).

Note that the transformation is a repetitive search process.
Given a TeSA, TransformTeSA may have multiple transfor-
mation plans. The process iterates over each plan to find the
satisfied one (line 38). Figure 6 shows an example. On the
left, a mixed precision TeSA can be decomposed to multi-

0 0
0 0+ +

Bit: 8
Block: 4x4

Bit: 32
Block: 1x1

Bit: 32
Block: 2x2

Bit: 32
Block: 1x1

Bit: 32
Block: 2x2

…Option 1 Option 2

Specialization hints

8-bit 32-bit Pruned

Bit: 32
Block: 4x4

Option 1 Option 2

Figure 6: Multiple transformation plans produced by a trans-
formation policy. The specialization hints are used by the
second pass compilation for code specialization.

Algorithm 3: Transform an operator’s execution plan.
Data: N: An m inputs single output operator to be transformed; P: A

transformation policy.
37 Function TransformOp(N):

/* HasBudget determines the number of
transformation options that can be searched */

38 while P.HasBudget() and P.PerfNotSatisfied() do
/* loop body is one transformation option */

39 S = [];
40 I1, . . . , Im, O = InputsOutputsTeSAOf(N);
41 foreach i ∈ 1, . . . ,m do
42 Ti = P.TransformTeSA(Ii);
43 To = P.TransformTeSA(O);
44 foreach 〈t1, . . . , tm, to〉 ∈ T1×·· ·×Tm×To do
45 Nsub = SpecializeOp(op=N, in=t1, . . . , tm, out=to);
46 S.Append(Nsub);
47 P.RecordPerf(G=ComposeToGraph(S), Profile(G));
48 return P.BestTransformation();
49 Function P::TransformTeSA(T):

/* return a new transformation option per run */
50 Ttrans f ormed = [];

/* BitOption: (i) 4 and 8, (ii) only 8, if
hardware natively supports 4-bit and 8-bit */

51 T1, . . . ,Tk = self.BitRounding(T , self.SampleBitOption());
52 foreach i ∈ 1, . . . ,k do
53 T 1

i , . . . ,T
j

i = self.WeightedBlockCover(Ti);
54 Ttrans f ormed .Extend(T 1

i , . . . ,T
j

i);
55 return Ttrans f ormed ;
56 Function P::WeightedBlockCover(T):
57 Bchosen = [];

/* covering non-pruned elements to blocks using
every available block size, to produce B */

58 B = self.AllCoveredBlocks(T , self.AvailableBlockSizes());
59 while not AllElementsCovered(T , Bchosen) do
60 Bcost = self.UpdateBlockCost(B);
61 b = BlockWithMinCost(Bcost);
62 Bchosen.Append(b);
63 B = B−b;

/* decompose T to the TeSAs with different block
sizes based on Bchosen */

64 return DecomposedTeSAs(T , Bchosen);

ple TeSAs each of which has one precision. It can also be
transformed to one TeSA where all the elements are aligned
to the highest precision. Similarly, for the right example, the
sparse TeSA can be decomposed to two TeSAs, one with a
block size of 2x2 and the other with a block size of 1x1. It
can also be transformed to one TeSA of block size 2x2 with
the pruned elements set to zero, or transformed to one TeSA
of block size 1x1. Note that the algorithm may decide not to
decompose a tensor and choose a block size of 1x1, indicating
that the TeSA has a fine-grained sparsity that is hard to be
transformed to regular sparsity.
TransformTeSA (line 49) implements the logic of trans-

forming a TeSA. It first decomposes TeSA in BitRounding,
based on both the quantization bit width that the TeSA con-
tains and the possible quantization bit width supported by the
hardware. For example, if the hardware supports both 4-bit
and 8-bit instructions, there are at least two rounding options:
(i) rounding to 4-bit and 8-bit accordingly, (ii) all rounding

218 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to 8-bit. For each TeSA returned by BitRounding, function
WeightedBlockCover chooses one or multiple proper block
sizes to cover the non-pruned elements, which we treat as a
weighted set cover problem [19]. The weight of each block
size corresponds to the cost of computation with the block
size on the underlying hardware (see §4 for details). We use
a simple greedy algorithm to pick the blocks with the lowest
cost (i.e., block_weight

num_covered_elements), until all non-pruned elements
are covered (line 56).

Transformation policy P can be further customized to in-
corporate new optimizations (e.g., supporting Sparse Tensor
Cores [1] detailed in §5.3).

To help codegen, each transformed TeSA is attached with
the information about the bit width and block size, named as
specialization hints (illustrated in Figure 6). The hints will be
passed to the second pass, elaborated next.
TeSA code specialization. The second compilation pass
specializes kernel code for each (sub)operator (i.e., line 45
in Algorithm 3). The specialization hints generated from the
previous pass guide the specialization strategy. For example,
the bit-width of an operator suggests whether to leverage a
specific hardware instruction (e.g., DP4A). And the loop tiling
of the operator should be aligned with the block size for effec-
tive dead code elimination (DCE). In addition, SparTA can
leverage traditional DNN compilers for dense computation.
For example, some intra-block computation is dense and thus
can use a dense implementation generated by existing DNN
compilers [29, 60, 91].

The specialization process starts from a dense version of
the operator, implemented as multi-level loops generated by
a traditional DNN compiler [29]. It first specializes under
the guidance of the block size in the specialization hints. It
searches from the outermost loop until the level (say l) of
inner loop body aligns with the block size. Since the pruning
sparsity attribute is specified at the granularity of block size,
many runs of the loop body within level l are dead compu-
tation. To eliminate the dead computation, we introduce a
new schedule primitive dismantle that jointly performs loop
unrolling and DCE. When dismantle is applied on a loop,
this loop and all its outer loops are unrolled and specialized
with the given sparsity attribute. An example is shown in Fig-
ure 7(b). dismantle is applied on the third loop, thus the top
three loops are unrolled, generating eight small Matmuls (i.e.,
[2,2]x[2,2]). According to the sparsity pattern in Figure 7(a),
six of them are dead computation and can be eliminated. In
essence, dismantle embeds a specific sparsity pattern into
the code, which eliminates the need of sparsity encoding,
e.g., compressed sparse row (CSR) [26]. As the index to the
non-pruned blocks/elements is specialized in the code, the
overhead of indirect addressing on the index is removed.

Given a different transformation plan (and the specification
hints), the code can be specialized differently. The hint in
Figure 7(c) show a smaller block size. In this case, the loop
body is a smaller Matmul (i.e., [2,1]x[1,1]), which enables

Matmul

T: m*k

Pruned elements

Kept elements
W: k*n

O: m*n

Specialization hints: T: {Bit: 32, Block: 2x2}, W: {Bit: 32, Block: 2x2}

for (m1: int, 0, 2)
for (n1: int, 0, 2)
for (k1: int, 0, 2){
… … // [2,2] x [2,2]

}

O0 += T0 * W0
O0 += T1 * W2
O1 += T0 * W1
O1 += T1 * W3
O2 += T2 * W0
O2 += T3 * W2
O3 += T2 * W1
O3 += T3 * W3

Specialized

Specialization hints: T: {Bit: 32, Block: 2x1}, W: {Bit: 32, Block: 1x1}

for (m1: int, 0, 2)
for (n1: int, 0, 4)
for (k1: int, 0, 4){
… … // [2,1] x [1,1]

}

O[0:2,0] += T[0:2,2] * W2,0

O[0:2,0] += T[0:2,3] * W3,0

O[0:2,1] += T[0:2,2] * W2,1

O[0:2,1] += T[0:2,3] * W3,1
O[0:2,2] += T[0:2,2] * W2,2
O[0:2,2] += T[0:2,3] * W3,2

O[0:2,3] += T[0:2,2] * W2,3

O[0:2,3] += T[0:2,3] * W3,3

T1

T2 T3

T0

W1

W2W3

W0

O1

O2 O3

O0

Specialized

(a)

(b)

(c)

dismantle

dismantle

Figure 7: Sparsity-aware code specialization, leveraging spe-
cialization hints generated during execution plan transforma-
tion. (a) is a sparse Matmul, (b) and (c) are its specialized
kernel code with different transformation plans. T [x : y,z] de-
notes the elements on row x to y and column z, Wx,y denotes
the value on row x and column y of W .

more DCEs. Besides the dead computations eliminated in the
previous case, four computations of the small Matmul can be
removed. Furthermore, as the small Matmul only accesses one
value in W , the value can be directly specialized to the code
(i.e., Wx,y) without maintaining a sparse tensor W in memory.

A specialization hint could also specify the block size equal
to the tensor’s shape (i.e., one block covers the whole tensor).
In this case, SparTA can directly use the existing state-of-the-
art general sparse kernel implementation (e.g., cuSPARSE [3],
taco [53]) or even use the dense kernel implementation if it
perform better. SparTA’s specialization framework is general
to incorporate any sparsity-aware techniques, including the
off-the-shelf sparse kernel and even its dense version.

Specializing operators with quantization attributes also
works on the multi-level loops, but starting from the inner-
most loop. SparTA picks a proper hardware instruction based
on the bit-width denoted in TeSA, e.g., DP4A [13] or wmma [5]
for 8bit, wmma for 4bit. The specialized tiling of the innermost
loop(s) is then aligned to the computation shape of the in-
struction. For example, one supported computation shape of
wmma is the Matmul [16,16]x[16,16]. To specialize for this
instruction, the tiling should rearrange the innermost loop
body to align with the shape, and then replace the rearranged
loop body with the instruction. The tiling for the instruction
DP4A with a shape [1,4]x[4,1] can be done similarly.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 219

4 Implementation
We implemented SparTA on Rammer [60], a state-of-the-
art open-source DNN compiler with no special support for
sparsity. We implemented sparsity attribute propagation as a
dedicated compilation pass over Rammer. A DNN model is
converted to an ONNX graph [14] before compiling. Each
TeSA element has a two-byte attribute: 7 bits record the bit
width of the element, 4 bits specify the element’s data format
(e.g., unsigned int, float32, bfloat16), and the rest 5 bits are
reserved. The bit-width zero means the element is pruned.
TeSA exists only during compile time and therefore incurs no
runtime memory cost. We implemented the execution plan
transformation within Rammer, with an additional compila-
tion pass that rewrites the graph with a better execution plan.
The specialized sub-operators are injected into Rammer’s
kernel DB for constructing the whole executable.

For the efficient execution of weighted block cover in ex-
ecution plan transformation (§3.3), SparTA calculates the
weight of different block sizes. Specifically, we implemented
a kernel template for block sparsity, and evaluated 13 dif-
ferent block sizes on that template. The overhead of each
block size is profiled by measuring the latency of the kernel
with zero sparsity and dividing the latency with the number
of blocks. The overhead is used as the weight of the block
sizes. When an operator is too sparse to saturate available
cores, the weights may become less accurate. In such cases,
we enumerate all the combinations of block sizes to run the
weighted block cover algorithm and pick the best one. For
kernel specialization, we implement the dismantle primitive
based on loop unrolling. When a loop is unrolled with dis-
mantle, we read the corresponding TeSA and eliminate dead
computations accordingly.

SparTA, as a full-stack solution for model sparsity, has
supported 21 model sparsity algorithms, including 16 pruning
algorithms and 5 quantization algorithms (full list omitted
due to page limit). Those algorithms can run on SparTA with
little code modifications, and benefit from SparTA not only
on sparsity exploration but also on model fine tuning, which
will be demonstrated in §5.4.

5 Evaluation
We evaluate SparTA on three popular DNN models with four
different sparsity patterns on NVIDIA GPU, AMD GPU, and
Intel CPU. Overall, our key findings include:

• SparTA significantly reduces the inference latency of
sparse DNN models with less memory consumption.
The speedup is up to 10.6x, 5.0x, 7.5x, 20.1x, 5.8x, 5.6x,
1.7x over PyTorchJIT, TensorRT, TVM, TVM sparse2,
Rammer, Rammer sparse3, and OpenVINO (CPU), re-
spectively. The average speedup is 3.8x, 2.6x, 4.2x, 8.4x,
3.0x, 3.2x, 1.7x. (§5.1)

2Excluding cases where kernel tuning failed for TVM and TVM sparse.
3The state-of-the-art sparse kernels wrapped in Rammer.

Model Type Sparsity Ratio Acc (%)

BERT
[34]

NLP
{Matmul}

Structured [87] 95% 89.7->88.49
Unstructured [43] 95% 89.7->88.67

Structured+8bit [52] 95% 89.7->88.03
Mixed Sparsity [48, 84] 94.99% 89.7->88.63

MobileNet
[49]

CV
{Conv}

Structured [94] 60% 78.27->75.62
Unstructured [43] 95% 78.27->64.15

Structured+8bit [52] 60% 78.27->75.13

HuBERT
[50]

Speech
{Conv,

Matmul}

Structured [56, 62] 80% 95.61->95.1
Unstructured [43] 95% 95.61->95.55

Structured+8bit [52] 80% 95.61->94.3

Table 3: Evaluated DNN models with different sparsity pat-
terns and their resulting accuracy. The second column lists the
major operators of each model. The column Ratio denotes
the initial sparsity ratio for pruned weights.

• Sparsity attribute propagation increases the end-to-end
sparsity ratio by up to 39.7%. With execution plan trans-
formation and code specialization, SparTA can achieve
up to 6.7x speed up over the state-of-the-art sparse kernel
implementation for a sparse DNN operator (e.g., Mat-
mul) with complex sparsity patterns. (§5.2, §5.3)

• SparTA facilitates the development and exploration of
sparse DNN models, producing DNN models with lower
inference latency and/or higher accuracy. (§5.4)

5.1 End-to-End Experiments

We evaluate SparTA on the inference latency and memory
usage of three popular DNN models across different task
domains, shown in Table 3. We evaluate four representative
sparsity patterns, covering different pruning and quantization
schemes and their combination. Unstructured sparsity prunes
model weights in the granularity of an element in weight ten-
sors to reach the desired sparsity ratio [43, 54, 55]. Structured
sparsity prunes weights in the granularity of column, row,
channel, or block, depending on specific models [44, 56, 59].
We apply different sparsity patterns to the three selected
models to show SparTA’s effectiveness under various pat-
terns. BERT is pruned in row combined with a block of size
32x32 [87]; MobileNet gets pruned in the output channel [94];
for HuBERT, it is a combination of channel pruning in the
Conv layer and head pruning in the transformer layer [56,62].
To further demonstrate the powerful expressiveness of TeSA,
we apply structured sparsity, based on which 8bit quantiza-
tion is further applied on the remaining tensor elements to
construct the third sparsity pattern, i.e., Structured+8bit. Fi-
nally, we introduce an even more complicated Mixed Sparsity
for BERT. On top of the Structured+8bit sparsity, we apply
unstructured sparsity with 32bit quantization back to 0.01%
of the pruned elements [48, 84]. This leads to a total sparsity
ratio of 94.99%.

We trained the models (BERT on dataset QQP [51], Mo-
bileNet on ImageNet-Dogs [33], HuBERT on SUPERB [85])
applied with the above sparsity patterns, the accuracy change

220 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of those sparse models is shown in the Acc column of Table 3.
Overall, the accuracy drops are consistent to those reported
in the corresponding papers. The accuracy of sparse BERT
drops around 1%. Mixed sparsity has the accuracy of 88.63%
at 94.99% sparsity, nearly the same accuracy as unstructured
sparsity, but is much easier to be accelerated. For MobileNet,
unstructured sparsity has a higher accuracy drop, as its sparsity
is high (i.e., 95%). For HuBERT, 95% unstructured sparsity
can outperform the structured ones with 80% sparsity ratio.

The models are evaluated on three types of accelerators:
NVIDIA GeForce RTX 2080 Ti, AMD Radeon VII, and In-
tel Xeon Silver 4210 CPU. We compare SparTA with seven
representative solutions, including one popular deep learn-
ing framework: PyTorch (v1.7) with JIT [67], two vendor-
specific toolkits: TensorRT (v7.2) for NVIDIA GPUs [18]
and OpenVINO (v2021.4.1) for Intel CPUs [15], two DNN
compilers: TVM (0.9.dev0) [29] and Rammer [60] (which
offers the state-of-the-art performance). To evaluate the state-
of-the-art sparse kernels/libraries in an end-to-end model, we
create Rammer sparse (or Rammer-S) by wrapping in Ram-
mer these sparse kernel libraries/implementations, including
cuSPARSE [3], taco [53], and Sputnik [39] for NVIDIA GPU,
hipSPARSE [17] for AMD GPU, MKL Sparse Linear Alge-
bra [12] for Intel CPU. For TVM, we also evaluate its sparsity
support [22] (denoted by TVM-S). Each model on TVM is
tuned with 1,000 trials per task using Ansor [91], aligned
with the common practice [91]. The batch size we used in the
end-to-end experiments (except Figure 12) is 32.

5.1.1 SparTA on CUDA GPUs

Structured sparsity. The first row of Figure 8 shows the in-
ference latency of the three models on the structured sparsity.
PyTorch, TensorRT, TVM, and Rammer treat them as three
dense models. TensorRT performs the best among them. Com-
pared to TensorRT, SparTA is 3.7x, 2.9x, 2.4x faster on BERT,
MobileNet, and HuBERT, respectively. TVM-S and Rammer-
S are aware of sparsity. TVM-S incurs high inference latency,
as the kernel templates it uses cannot efficiently support dif-
ferent sparsity patterns. Rammer-S performs marginally bet-
ter than TensorRT on MobileNet and HuBERT. The SOTA
sparse kernel uses Sputnik, which performs better than cuS-
PARSE and taco on those models. SparTA performs 1.7x,
2.6x, and 2.3x faster than Rammer-S. Its performance gain
comes mainly from sparsity propagation, which increases the
whole model’s sparsity (see §5.2) and sparsity transformation,
i.e., covered with different block sizes on different layers (see
§5.3).

Memory footprints in the inference are shown in the first
row of Figure 9. SparTA shows the smallest footprint. For Mo-
bileNet, PyTorch and TensorRT consume much more memory,
because they use cuDNN, which requires additional memory
to store weights and activations. SparTA’s memory usage is
smaller than TVM-S and Rammer-S due to sparsity propaga-
tion, which increases the sparsity ratio.

BERT0

100

La
te

nc
y

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

BERT0

100

La
te

nc
y

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

BERT0

100

La
te

nc
y

(m
s)

MobileNet0
4
8

12

HuBERT0
50

100
150

215

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 8: Inference latency of different models with three
sparsity patterns on NVIDIA 2080 Ti.

BERT0

3000

5000
M

em
or

y
(M

B)

MobileNet0

2000
3000

HuBERT0

1000

2000

BERT0

3000

5000

M
em

or
y

(M
B)

MobileNet0

2000
3000

HuBERT0

1000

2000

BERT0

3000

5000

M
em

or
y

(M
B)

MobileNet0

2000
3000

HuBERT0

1000

2000

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 9: GPU memory usage of different models with three
sparsity patterns on NVIDIA 2080 Ti.

Unstructured sparsity. For unstructured sparsity (i.e., sec-
ond row of Figure 8), TensorRT also performs the best
among those dense baselines, marginally better than Rammer.
SparTA is 1.6x, 2.2x, 1.5x faster than TensorRT on BERT,
MobileNet, HuBERT, respectively. Rammer-S still uses Sput-
nik. SparTA outperforms Rammer-S by 1.13x, 2.4x, 1.3x on
BERT, MobileNet, HuBERT, respectively. The speedup on
MobileNet is high because the sparsity is easier to be propa-
gated on depthwise and pointwise convolution even with un-
structured sparsity. On BERT and HuBERT, the performance
gain over Rammer-S mainly comes from code specialization
(i.e., weight values are embedded into kernel code). For the
memory usage (i.e., the second row of Figure 9), SparTA
shows a usage similar to TVM-S and Rammer-S, and per-
forms better than the other baselines.
Structured+8bit. Shown in the third row of Figure 8, Ten-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 221

2080Ti0

50

100

130

La

te
nc

y
(m

s)

ROCM GPU0

50

100

CPU500

1000

1500

2000
1550
1600

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA
OpenVINO

Figure 10: Mixed Sparsity end-to-end latencies.

sorRT performs much better than PyTorch, TVM, and Ram-
mer, because it supports low-bit computations with Tensor
Cores. SparTA outperforms TensorRT by 2.3x, 1.7x, 2.2x on
BERT, MobileNet, HuBERT, respectively. This is because,
besides leveraging the hardware instruction wmma of Tensor
Core, SparTA further combines the optimization for struc-
tured sparsity. Compared to Rammer-S (also using Sputnik),
SparTA is 2.3x, 4.3x, 5.6x faster on BERT, MobileNet, Hu-
BERT, respectively, because Rammer-S has limited optimiza-
tion (e.g., missing low-bit instructions) for each single sparse
operator, while SparTA does holistic optimizations on the
model, e.g., sparsity propagation, operator transformation and
specialization. The speedup shows the combined gain from
structured sparsity (i.e., the first row of Figure 8) and low-bit
instructions. The memory usage of SparTA (i.e., the third row
of Figure 9) is the lowest: the memory saving comes from
both low-bit values and pruned elements. This highlights the
benefit of SparTA and in particular TeSA that uses a unified
abstraction for pruning and quantization to make such a joint
optimization possible.
Mixed sparsity. The left figure in Figure 10 shows the
latency of BERT with Mixed Sparsity. SparTA is 5.9x,
5.0x, 6.8x, 8.7x, 5.2x, 2.2x faster than PyTorch, TensorRT,
TVM, TVM-S, Rammer, Rammer-S, respectively. Unlike
structured+8bit, TensorRT shows slight advantage over other
baselines on mixed sparsity, although most elements are 8-bit.

Latency Breakdown. Figure 11 shows the performance
breakdown of BERT on the four sparsity patterns. “+Sparse
Kernel” applies our generated sparse kernels following the
original sparsity ratio without operator transformation and
kernel specialization. It can be treated as Rammer-S. “+Prop-
agation” applies sparsity propagation on the model and regen-
erates the sparse kernels without transformation and special-
ization. “+Transformation” tunes the block size for covering
non-pruned elements of each sparse operator, and for mixed
sparsity it also decomposes sparse tensors to multiple ones.
“+Specialization” tunes intra-block implementation and em-
beds values into codes when necessary.

For mixed sparsity, the latency reduction brought by each
optimization is 55.8%, 19.7%, 37.7%, and 12.6%, respectively.
The other three sparsity patterns could be viewed as a type
of breakdown of mixed sparsity. In structured sparsity and
structured+8bit, transformation brings 20.5% and 26.5% la-

tency reduction, respectively, while propagation brings 19.7%
and 15.8% latency reduction, respectively. Finally, intra-block
specialization brings 8.2%, 11.4%, and 13.7% latency reduc-
tion for structured, unstructured, and structured+8bit, respec-
tively. The significance of a certain optimization depends on
DNN models and sparsity patterns. For BERT in Figure 11,
“+Sparse Kernel” brings 2.1x gain on average, SparTA brings
an extra 2x gain. For MobileNet to be illustrated in §5.2,
“+Propagation” brings the most gain (e.g., increasing sparsity
from the 50% to 89.7%).
Latency of different batch sizes. Figure 12 shows the per-
formance of BERT under different batch sizes on NVIDIA
2080Ti. When batch size varies from 8 to 64, SparTA is on av-
erage 4.1x-4.6x, 2.4x-2.7x, 4.2x-6.3x, 5.9x-13.8x, 3.6x-4.1x,
2.2x-2.6x faster than PyTorch, TensorRT, TVM, TVM-S, Ram-
mer, Rammer-S, respectively on three sparsity patterns. The
overall speedup of SparTA is similar across different batch
sizes. The range of the speedup over TVM-S is relatively
large, because large batch size induces large tuning space that
makes the kernel tuning in TVM less effective.
Compiling overhead. The overhead of SparTA comes from
the compiling phase, which consists of three parts: propaga-
tion, transformation, specialization. The overhead is positively
related to the number of operators in the model. Taking BERT
as an example, the propagation, transformation, and special-
ization take 3 minutes, 2 hours and 1.5 hours respectively
using a single thread. It is possible to reduce the overhead
by leveraging more prior knowledge in transformation policy
and pre-tuned kernels. We leave it as future work.

5.1.2 SparTA on Other Accelerators

ROCm GPU. Figure 13 shows inference latency of the three
models on AMD Radeon VII. The speedup of SparTA over
PyTorch on the three sparsity patterns is up to 3.5x, 4.2x,
2.2x for BERT, MobileNet, and HuBERT, respectively. The
kernel tuning of TVM on ROCm GPUs does not function
properly (always stuck in Debug mode), the performance of
TVM and TVM-S on BERT and HuBERT suffers a lot. They
show reasonable performance on MobileNet, because they

Structured SparsityUnstructured Sparsity Structured+8bit Mixed Sparsity
10

45
70
80

La
te

nc
y

(m
s)

Rammer
+Sparse Kernel

+Propagation
+Transformation

+Specialization

Figure 11: Performance breakdown of SparTA for different
sparsity patterns of BERT on 2080 Ti. Each bar shows the
result of applying the additional optimization labeled on this
bar from the previous one.

222 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

batchsize=80

40

La
te

nc
y

(m
s)

batchsize=160

50

batchsize=640

500

batchsize=80

40

La
te

nc
y

(m
s)

batchsize=160

40

batchsize=640

250

batchsize=80

40

La
te

nc
y

(m
s)

batchsize=160

50

batchsize=640

500

150 150

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch
TensorRT

TVM
TVM-S

Rammer
Rammer-S

SparTA

Figure 12: Inference latency of BERT under different batch
sizes on NVIDIA 2080Ti.

BERT0
100

La
te

nc
y

(m
s)

MobileNet0

10

HuBERT0

200

BERT0

100

La
te

nc
y

(m
s)

MobileNet0

10

HuBERT0
100

BERT0
100

La
te

nc
y

(m
s)

MobileNet0

10

HuBERT0

200

1600
1650

5775
5800

50010001500
5775
5800

1550
1600
1650

5775
5800

Structured Sparsity

Unstructured Sparsity

Structured+8bit Sparsity

PyTorch TVM TVM-S Rammer Rammer-S SparTA

Figure 13: Inference latency of different models with three
sparsity patterns on AMD Radeon VII.

have provided reasonably good default kernel schedules for
some popular DNN models including MobileNet. Compared
to Rammer, SparTA is up to 3.4x, 4.1x, 2.4x faster for BERT,
MobileNet, and HuBERT, respectively, on the three sparsity
patterns. Rammer-S uses hipSPARSE on ROCm GPU, the
speedup of SparTA over Rammer-S is up to 4.7x, 4.6x, 5.0x
for BERT, MobileNet, and HuBERT, respectively.

For mixed sparsity of BERT shown in the middle of Fig-
ure 10, SparTA is 3.3x, 56.7x, 54.1x, 3.2x, 4.4x faster than Py-
Torch, TVM, TVM-S, Rammer, and Rammer-S, respectively.
Although Rammer-S with hipSPARSE has higher latency than
Rammer, it has a lower memory footprint.
Intel CPU. We evaluated mixed sparsity pattern of BERT
on CPU, the result is shown in the right of Figure 10. Com-
pared to OpenVINO, a high-performance inference engine
for Intel CPUs, SparTA achieves 1.7x speedup. For PyTorch,
TVM, TVM-S, the speedup of SparTA is 1.8x, 1.6x, 1.5x, re-
spectively. Rammer-S uses the MKL library, which leverages

Structured Sparsity
0.5

0.7

0.9
1.0

Sp
ar

sit
y

Ra
tio

50% 70% 90%

0 10 20
Layer Index

0.5

0.7

0.9
1.0

Sp
ar

sit
y

Ra
tio

UnStructured Sparsity

Figure 14: Propagated sparsity across the layers for different
sparsity patterns on MobileNet

the sparsity, thus faster than other baselines. SparTA still has
1.4x performance gain over Rammer-S, because it leverages
low-bit instruction (i.e., AVX512 VNNI [10]) and further op-
timizes the model with sparsity propagation and execution
plan transformation in a holistic way.

5.2 Sparsity Attribute Propagation

Propagation of pruned elements. The performance gain
brought by propagation on BERT has been illustrated in Fig-
ure 11. The propagation has higher potentials on MobileNet,
as convolution’s filter size is small (e.g., 3x3). Figure 14 shows
how sparsity is propagated across layers on MobileNet, which
increases each layer’s sparsity ratio. In this experiment, we
tested three sparsity ratios (i.e., 50%, 70%, 90%) pruned by
the same algorithm used in the end-to-end experiment. For
each sparsity ratio, we prune every layer of MobileNet to the
target ratio. Then the propagation rule is applied. The accu-
racy results of inference on train/test dataset are exactly the
same before and after propagation, as the propagation rule for
pruned elements does not affect computation logic.

For structured sparsity, the total sparsity ratio is increased
from 50% to 89.7% after propagation. The curve’s zigzag
is caused by different propagation potential of the interleav-
ing depthwise convolution and pointwise convolution in Mo-
bileNet. Interestingly, when the original sparsity ratio is 90%,
after propagation the sparsity ratio becomes 100%, which ex-
plains the anomaly that, although there are 10% filters left on
each convolution (before propagation), the model’s accuracy
is similar to a random image classifier. The propagation abil-
ity on unstructured sparsity is lower. Only high sparsity ratio
could bring an obvious increase of sparsity ratio. For example,
with 90% original sparsity, the total sparsity is increased to
95.3% after propagation. With Tensor Scrambling, our ex-
periences show 256 randomly sampled tensors can identify
sparsity correctly.
Propagation of quantization bit. In this experiment, we
evaluate the propagation rule for quantization described in
§3.2. We follow the same approach proposed in HAQ [77] to
quantize MobileNet. Specifically, it uses reinforcement learn-

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 223

0 10 20
Layer Index

4

6

8

Bi
t W

id
th

Before Propagation After Propagation

Figure 15: The quantization (bit width) of each layer in Mo-
bileNet before and after propagation.

70%-block80%-block90%-block

0.05

0.15

0.25

La
te

nc
y

(m
s)

70%-block(8bit)
80%-block(8bit)

90%-block(8bit)

0.05

0.15

0.25

BlockSparse Kernel Sputnik SparTA

Figure 16: The performance of execution plan transformation
for mixed sparsity patterns. B is sparsified for the matrix
multiplication A×B (1024x1024x1024). “X%-block” means
X% block sparsity mixed with 1% unstructured sparsity.

ing to explore the bit width on each weight and activation ten-
sor. The candidate bit width is between 0 to 8. After exploring
50 different configurations of bit width, we pick the best one,
whose accuracy on ImageNet is 64.6%. The propagation rule
is then applied to that configuration. The experiment result is
shown in Figure 15: 18 out of 28 layers reduces its bit width
(from 7bit to around 4bit), while the model accuracy after
propagation only drops slightly, from 64.6% to 64.2%. From
another point of view, our propagation rule for quantization is
complementary to the search algorithm (e.g., reinforcement
learning, simulated annealing [58]) on quantization bits. A
proper combination of them could improve search efficiency,
which is an interesting future work.

5.3 Efficient Code Generation with TeSA
Effectiveness of execution plan transformation. The
sparsity-aware execution plan transformation in SparTA could
handle complex sparsity patterns efficiently. We test two
sophisticated sparsity patterns: (1) Mix of structured spar-
sity with block size 32x32 and unstructured sparsity (i.e.,
1x1) [48, 53]. There are 1% unstructured elements, and the
structured sparsity ratio varies from 70% to 90%. (2) Based
on the first sparsity pattern, we further make the structured
sparsity 8bit, and make unstructured sparsity 32bit [84]. To
show the effectiveness of transformation, we compare SparTA
with two baselines: one is our specialized kernel for structured
sparsity (denoted by BlockSparse), where the unstructured
elements are covered with 32x32 blocks; the other is Sputnik,
which is optimized for unstructured sparsity.

The results are shown in Figure 16. For the first sparsity pat-

50% 60% 70% 80% 90%
Sparsity Ratio

0

200

400

 L
at

en
cy

 (u
s)

cuBLAS BlockSparse Kernel Sputnik SparTA

Figure 17: The performance of execution plan transformation
leveraging Sparse Tensor Cores. B is sparsified with different
sparsity ratios for A×B (1024x1024x1024).

tern, SparTA transforms the operator into two sub-operators
with structured sparsity and unstructured sparsity, respectively.
After transformation, SparTA becomes 2.5x, 3.3x, 5.4x faster
than BlockSparse on the three sparsity ratios, respectively.
The performance of BlockSparse has little change, because
the blocks to cover those unstructured elements construct
the major of the blocks in the computation. The speedup of
SparTA over Sputnik is 3.2x, 3.1x, 2.8x, respectively. Sputnik
performs the worst on 70%-block, because it treats each block
as 1,024 unstructured elements, missing optimization oppor-
tunities. For the second sparsity pattern, the performance gain
of SparTA is much higher, i.e., 4.1x, 5.1x, 6.7x faster than
BlockSparse, 5.2x, 4.7x, 3.5x faster than Sputnik. This is be-
cause SparTA further leverages low-bit instructions for the
computation of those 32x32 blocks.

The transformation can effectively leverage special hard-
ware like Sparse Tensor Core [1]. Sparse Tensor Core has a
strict requirement on tensor’s sparsity pattern, e.g., one ele-
ment should be pruned in a [1×2] tile (50% sparsity ratio).
To leverage Sparse Tensor Cores for the generic unstructured
sparsity, we develop a new transformation policy to decom-
pose an unstructured sparse tensor into two: one follows the
sparsity requirement of Sparse Tensor Cores, the other con-
tains the elements not included in the first one. The first one
uses Sparse Tensor Cores, while the other uses our specialized
sparse kernel. To evaluate the transformation, we randomly
generate an unstructured sparse tensor whose sparsity ratio
ranges from 50% to 90% in one input of Matmul. The experi-
ment runs on NVIDIA A100, the result is shown in Figure 17.
SparTA performs better than both BlockSparse and Sputnik,
as it leverages cuSPARSELt [6], a library optimized for Sparse
Tensor Cores, for sub-Matmul that costs around 40 us. The
other sub-Matmul has 12.5%, 8%, 4.5%, 2.0%, 0.5% sparsity
ratio respectively. BlockSparse shows a similar performance
to cuBLAS. As the sparsity is randomly introduced, it actually
computes a dense Matmul.

Sparsity Pattern 1 2 3 4 5
Origin Latency(ms) 1.293 0.361 2.808 1.263 0.189

SparTA Latency(ms) 0.436 0.191 0.599 0.569 0.101
Best Block Size 32x128 128x32 32x128 32x64 128x64

Table 4: Block size transformation

During the transformation, SparTA also finds the best

224 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

block size to cover those non-pruned elements. We picked 5
sparse tensors with different sparsity patterns in BERT, ap-
ply WeightedBlockCover to find the best block size of the
5 tensors. Table 4 shows the found block sizes. The chosen
block sizes are all different from the original 32x32 block size
and they all perform much better than the kernel implemented
with the original block size. Essentially, the block covering
makes a trade-off between the efficiency that a certain block
size is optimized for the underlying hardware and the ratio of
the computation wasted using that block size.
Effectiveness of TeSA code specialization. We evaluate
SparTA’s specialized matrix multiplication kernel under dif-
ferent unstructured sparsity ratios, ranging from 50% to
99%. We compare the specialized kernels with cuSPARSE,
taco [16, 53], and Sputnik [39]. The result is shown in Fig-
ure 18. At 99% sparsity, cuSPARSE outperforms cuBLAS,
but incurs 2.2x slowdown at 95% sparsity. In most cases,
cuSPARSE performs much worse than cuBLAS on latency,
although it has a lower memory footprint due to encoded
sparse tensors. taco performs worse than cuSPARSE due to
its inefficient utilization of shared memory [70]. It is 15.6x
slower than cuSPARSE for 99% sparsity; the slowdown is
reduced to 4.0x when the sparsity is 50%. SparTA is up to
6.0x faster than cuSPARSE. It outperforms cuBLAS when
the sparsity is only 70%. Sputnik also performs better than
cuSPARSE and taco. SparTA is up to 1.7x faster than Sputnik.

50% 70% 80% 90% 95% 99%
Sparsity Ratio

0

500

 L
at

en
cy

 (u
s)2500

5000

cuBLAS cuSparse taco Sputnik SparTA

Figure 18: Comparison of cuSPARSE, taco, Sputnik, and
SparTA on matrix multiplication (1024x1024x1024) with fine-
grained sparsity under different sparsity ratios. B is sparse for
A×B.

5.4 Augmented Model Sparsity Exploration
SparTA, as a full-stack solution for model sparsity, facilitates
the exploration of existing model sparsity algorithms. In this
section, we demonstrate this from the following two aspects.
Actual latency vs. FLOPS as proxy-metric for latency re-
duction in model pruning. In this experiment, we use Sim-
ulated Annealing [58] to prune MobileNet to reduce 30% and
40% inference latency, respectively, i.e., the two dash lines
in Figure 19. Our baseline uses FLOPS as the metric to filter
out the disqualified models: the model whose FLOPS is larger
than 70% of the original FLOPS. In contrast, SparTA uses the
real latency to filter models. The result is shown in Figure 19.
The best sparse models found by the two approaches have

similar accuracy. However, the model found via FLOPS does
not meet the latency target, 23.8% and 51.4% higher than
the target, respectively. This shows FLOPS cannot faithfully
reflect real inference latency. In contrast, the sparse models
found by the algorithm on SparTA successfully satisfy the
latency requirement.

30% 40%
1.0

1.7
2.0

2.5

In
fe

re
nc

e
La

te
nc

y
(m

s)

Acc:91.96% Acc:91.77%

Acc:91.38% Acc:91.18%
FLOPS Based
SparTA Based

Figure 19: The comparison of using real latency or FLOPS as
metric to explore sparse models by Simulated Annealing.

Speeding up sparsity exploration. With high-performance
sparse kernels, SparTA can speed up the exploration process
of a sparsity algorithm, which usually searches for a spar-
sity pattern iteratively [58, 86]. In each iteration, the algo-
rithm “sparsifies” a proportion of the model (e.g., 30%) and
fine-tunes it. It repeats the iteration until achieving the tar-
geted sparsity (e.g., 90%). In this process, model fine-tuning
consumes significant exploration time. With SparTA, model
fine-tuning can be accelerated. Figure 20 runs Simulated An-
nealing, an iterative sparsity algorithm, on ResNet50. The
algorithm prunes 50% of the remaining weights and fine-tune
300 epochs in each iteration. SparTA reduces 31.8% of the
total exploration time, compared to the baseline that always
uses the original dense model.

5.5 Accelerating Sparse Model Training
In addition to model pruning and quantization, some DNN
models are designed to be sparse from the beginning, e.g.,
sparse attention [72]. SparTA can also be used to speed up
the training process of such sparse models.

We show this by applying SparTA to the training of
NÜWA [81], a state-of-the-art visual synthesis pretrain model
that adopts a novel 3D Nearby Attention (3DNA) mechanism.
In 3DNA, each token computes the attention to the nearby
tokens within a small 3D window, instead of to all the tokens
(i.e., full attention).

We implement 3DNA using SparTA and compare the per-
formance with its previous PyTorch implementation (a dense
version), and another version implemented using OpenAI’s
Triton (v1.1.1) [21], a compiler that supports sparse atten-
tion. As the two baselines are PyTorch-based, we integrate
SparTA-based 3DNA into PyTorch for a fair comparison. The
result is shown in Figure 21. Both Triton and SparTA per-
form much faster than the default PyTorch version, and con-
sume less GPU memory. The default PyTorch version en-
counters out-of-memory when the batch size grows beyond
16. SparTA is 2.15∼2.24x faster than Triton across different

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 225

0 200 400 600 800
Training Epoch

30
40
50
60
70

Tr
ai

ni
ng

 T
im

e
Pe

r E
po

ch
(s

)
With SparTA Without SparTA

Figure 20: The improvement on exploration time when using
SparTA-accelerated sparse model.

8 16 32 64
Batchsize

0

20

40

80

 T

im
e

(m
s)

XX

8 16 32 64
Batchsize

0

2000

4000

6000

8000

 M

em
or

y(
M

B)

XX

Pytorch Triton SparTA

Figure 21: The time of training one batch and GPU memory
consumption of 3DNA on NVIDIA 2080Ti.

batch sizes, mainly because SparTA specializes the block sizes
(e.g., 32x64, 32x32) covered on non-zero values in the matrix
multiplications of 3DNA. The memory usage of SparTA and
Triton are similar. As the SparTA-based version currently
relies on PyTorch for the management of some intermediate
tensor, it is possible to further improve the memory usage by
moving it to the SparTA side.

6 Related Works
Sparsity support in DNN frameworks and compilers.
Deep learning frameworks like PyTorch [67] and Tensor-
Flow [23] or compilers like TVM/Ansor [29, 91] exploit
sparsity by vendor-specific libraries like cuSPARSE/cuS-
PARSELt [3] or user-provided sparsity kernel templates [29].
The lack of understanding to the specific sparsity pattern
across a sparse model leads to a subpar performance. In
contrast, with TeSA, SparTA can capture arbitrary sparsity
patterns and enable various sparsity-aware optimizations to
generate efficient end-to-end code.

SparTA’s design incorporates several classic compiler tech-
niques. For example, sparsity attribute propagation is similar
to type qualifiers [38] and type inference [32]. OpenMP [35]
also leverages attribute propagation in a different problem do-
main with a different mechanism. Code specialization based
on value profiling [27] is also a well-known technique. Ze-
roploit [69] and PGZ [71] also use a similar idea, but focus
on gaming applications. Instead of values, SparTA uses more
general attributes for code specialization. And SparTA offers
a complete framework for DNN model sparsity.
Sparsity acceleration of DNN models. Sparse matrix mul-
tiplication has been studied for decades in scientific comput-
ing [68,80]. With the emerging accelerators (e.g., GPU [8,20],
TPU [4], FPGA [11], GraphCore [9]), some research op-
timizes sparse matrix multiplication for a certain type of

hardware [24, 26, 39, 80, 95]. Another type of works study
an efficient sparse data format (e.g., CSR, CSB, and DIA)
to reduce memory footprint and improve cache efficiency.
taco [30, 53, 70] generalizes various sparse data formats with
a unified expression. It generates sparse kernel code using the
proper data format best fit for a class of sparsity pattern (e.g.,
99% sparsity). Unlike taco, SparTA proposes a holistic frame-
work for sparsity, including sparsity propagation, execution
plan transformation, and code specialization.

To optimize sparse kernels on GPU, SparseRT [79] embeds
sparse weight values into kernel codes rather than stored in
a sparse data format. It can be seen as a special case of code
specialization in SparTA, i.e., unrolling all the loops. Hong
et. al [48] reorders elements in a sparse tensor and uses an
adaptive tiling strategy to enhance the performance of sparse
matrix multiplication. These optimizations are complemen-
tary to SparTA.

Some works [28, 88] co-design sparsity algorithms with
hardware, which balance sparsity for efficient parallel exe-
cution on a GPU. Similar design has been incorporated in
Sparse Tensor Core [93]. EIE [41] designs a new data en-
coding/decoding node and a new Processing Element (PE) to
speed up matrix-vector multiplication. SCNN [65] designs
another architecture of PE, which supports sparse convolution
in a compressed format. SparTA can leverage these new accel-
erators with new transformations and specialization passes.
Sparsity exploration on DNN models. Research on both
neural science and deep learning suggests that a deep neu-
ral network is sparse [54, 89]. Various model compression
algorithms are shown to construct sparse models with little
accuracy degradation. Unstructured pruning prunes model
weights without a regular pattern [43, 54, 55], while other
works prune DNN models in a regular granularity, such
as in the filter [44], channel [56, 59] in CNN, and block
level [61, 63]. Quantization is another way to sparsify a
model, including single-precision [31,52,92], mixed-precision
among layers [36, 57, 77], and mixed-precision within each
tensor [66, 84]. Recent works further combine the pruning
and quantization techniques [42, 74, 75, 78, 83, 90]. SparTA’s
TeSA abstraction could capture the sparsity patterns in all
these works and generate efficient code for the sparse model.

7 Conclusion
SparTA takes a principled system approach to model spar-
sity in deep learning, centered on the new TeSA abstraction.
SparTA is designed to accommodate a rich set of sparsity
patterns, work end-to-end and across the stack to support
propagation of sparsity patterns and the optimizations that
take advantage of those patterns, and leverage compiler tech-
nology and hardware support, all in an extensible framework.
SparTA can not only contribute to superior sparsity-induced
speedup, but also accelerate model sparsity innovations within
a unified framework, for the first time.

226 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

References

[1] Accelerating inference with sparsity using the nvidia
ampere architecture and nvidia tensorrt. https://de
veloper.nvidia.com/blog/accelerating-infer
ence-with-sparsity-using-ampere-and-tensor
rt/, 2021.

[2] The api reference guide for cublas, the cuda basic linear
algebra subroutine library. https://docs.nvidia.co
m/cuda/cublas/index.html, 2021.

[3] The api reference guide for cusparse, the cuda sparse
matrix library. https://docs.nvidia.com/cuda/c
usparse/index.html, 2021.

[4] Cloud tpu: Train and run machine learning models faster
than ever before. https://cloud.google.com/tpu,
2021.

[5] Cuda c++ programming guide. https://docs.nvidi
a.com/cuda/cuda-c-programming-guide/index.
html#wmma, 2021.

[6] cusparselt: A high-performance cuda library for sparse
matrix-matrix multiplication. https://docs.nvidia.
com/cuda/cusparselt/index.html, 2021.

[7] Einstein notation. https://en.wikipedia.org/wik
i/Einstein_notation, 2021.

[8] Geforce rtx 2080 ti. https://www.nvidia.com/e
n-us/geforce/graphics-cards/rtx-2080-ti/,
2021.

[9] Graphcore. https://www.graphcore.ai/, 2021.

[10] Intel advanced vector extensions 512 (intel avx512). ht
tps://www.intel.com/content/www/us/en/arch
itecture-and-technology/avx-512-overview.h
tml, 2021.

[11] Intel fpgas and programmable devices. https://www.
intel.com/content/www/us/en/products/progr
ammable.html, 2021.

[12] Intel oneapi math kernel library. https://www.intel.
com/content/www/us/en/developer/tools/onea
pi/onemkl.html, 2021.

[13] Mixed-precision programming with cuda 8. https:
//developer.nvidia.com/blog/mixed-precisio
n-programming-cuda-8/, 2021.

[14] Open neural network exchange. https://onnx.ai/,
2021.

[15] Openvino: Deploy high-performance, deep learning in-
ference. https://www.intel.com/content/www/us
/en/developer/tools/openvino-toolkit/overv
iew.html, 2021.

[16] Reproducing oopsla 2020 results. https://github
.com/tensor-compiler/taco/tree/oopsla2020,
2021.

[17] Rocm sparse marshalling library. https://github.c
om/ROCmSoftwarePlatform/hipSPARSE, 2021.

[18] The sdk for high-performance deep learning inference.
https://docs.nvidia.com/deeplearning/tenso
rrt/, 2021.

[19] Set cover problem. https://en.wikipedia.org/w
iki/Set_cover_problem, 2021.

[20] The world’s first 7nm gaming gpu. https://www.am
d.com/en/products/graphics/amd-radeon-vii,
2021.

[21] Triton. https://github.com/openai/triton.git,
2021.

[22] Tvm sparsity code. https://github.com/apache/
tvm/blob/254563a3140cf63fe77a46058688209de
3aa213c/python/tvm/topi/cuda/sparse.py#L96,
2021.

[23] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng
Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, San-
jay Ghemawat, Geoffrey Irving, Michael Isard, et al.
Tensorflow: A system for large-scale machine learning.
In 12th {USENIX} symposium on operating systems de-
sign and implementation ({OSDI} 16), pages 265–283,
2016.

[24] Nathan Bell and Michael Garland. Efficient sparse
matrix-vector multiplication on cuda. Technical report,
Citeseer, 2008.

[25] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Nee-
lakantan, Pranav Shyam, Girish Sastry, Amanda Askell,
et al. Language models are few-shot learners. arXiv
preprint arXiv:2005.14165, 2020.

[26] Aydin Buluç, Jeremy T Fineman, Matteo Frigo, John R
Gilbert, and Charles E Leiserson. Parallel sparse matrix-
vector and matrix-transpose-vector multiplication using
compressed sparse blocks. In Proceedings of the twenty-
first annual symposium on Parallelism in algorithms
and architectures, pages 233–244, 2009.

[27] Brad Calder, Peter Feller, Alan Eustace, et al. Value
profiling and optimization. Journal of Instruction Level
Parallelism, 1(1):1–6, 1999.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 227

https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://developer.nvidia.com/blog/accelerating-inference-with-sparsity-using-ampere-and-tensorrt/
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cublas/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://docs.nvidia.com/cuda/cusparse/index.html
https://cloud.google.com/tpu
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#wmma
https://docs.nvidia.com/cuda/cusparselt/index.html
https://docs.nvidia.com/cuda/cusparselt/index.html
https://en.wikipedia.org/wiki/Einstein_notation
https://en.wikipedia.org/wiki/Einstein_notation
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/rtx-2080-ti/
https://www.graphcore.ai/
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/architecture-and-technology/avx-512-overview.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/products/programmable.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl.html
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://developer.nvidia.com/blog/mixed-precision-programming-cuda-8/
https://onnx.ai/
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://github.com/tensor-compiler/taco/tree/oopsla2020
https://github.com/tensor-compiler/taco/tree/oopsla2020
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://github.com/ROCmSoftwarePlatform/hipSPARSE
https://docs.nvidia.com/deeplearning/tensorrt/
https://docs.nvidia.com/deeplearning/tensorrt/
https://en.wikipedia.org/wiki/Set_cover_problem
https://en.wikipedia.org/wiki/Set_cover_problem
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://www.amd.com/en/products/graphics/amd-radeon-vii
https://github.com/openai/triton.git
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96
https://github.com/apache/tvm/blob/254563a3140cf63fe77a46058688209de3aa213c/python/tvm/topi/cuda/sparse.py#L96

[28] Shijie Cao, Chen Zhang, Zhuliang Yao, Wencong Xiao,
Lanshun Nie, Dechen Zhan, Yunxin Liu, Ming Wu, and
Lintao Zhang. Efficient and effective sparse lstm on
fpga with bank-balanced sparsity. In Proceedings of the
2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 63–72, 2019.

[29] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin
Zheng, Eddie Yan, Haichen Shen, Meghan Cowan,
Leyuan Wang, Yuwei Hu, Luis Ceze, et al. {TVM}:
An automated end-to-end optimizing compiler for deep
learning. In 13th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 18),
pages 578–594, 2018.

[30] Stephen Chou, Fredrik Kjolstad, and Saman Amaras-
inghe. Automatic generation of efficient sparse tensor
format conversion routines. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 823–838, 2020.

[31] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran
El-Yaniv, and Yoshua Bengio. Binarized neural net-
works: Training deep neural networks with weights
and activations constrained to+ 1 or-1. arXiv preprint
arXiv:1602.02830, 2016.

[32] Luis Damas and Robin Milner. Principal type-schemes
for functional programs. In Proceedings of the 9th
ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, pages 207–212, 1982.

[33] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on computer
vision and pattern recognition, pages 248–255. Ieee,
2009.

[34] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv
preprint arXiv:1810.04805, 2018.

[35] Johannes Doerfert and Hal Finkel. Compiler opti-
mizations for openmp. In International Workshop on
OpenMP, pages 113–127. Springer, 2018.

[36] Ahmed Elthakeb, Prannoy Pilligundla, FatemehSadat
Mireshghallah, Amir Yazdanbakhsh, Sicuan Gao, and
Hadi Esmaeilzadeh. Releq: An automatic reinforcement
learning approach for deep quantization of neural net-
works. In NeurIPS ML for Systems workshop, 2018,
2019.

[37] William Fedus, Barret Zoph, and Noam Shazeer. Switch
transformers: Scaling to trillion parameter models
with simple and efficient sparsity. arXiv preprint
arXiv:2101.03961, 2021.

[38] Jeffrey S Foster, Manuel Fähndrich, and Alexander
Aiken. A theory of type qualifiers. ACM SIGPLAN
Notices, 34(5):192–203, 1999.

[39] Trevor Gale, Matei Zaharia, Cliff Young, and Erich
Elsen. Sparse GPU kernels for deep learning. In Pro-
ceedings of the International Conference for High Per-
formance Computing, Networking, Storage and Analysis,
SC 2020, 2020.

[40] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao,
Michael W Mahoney, and Kurt Keutzer. A survey of
quantization methods for efficient neural network infer-
ence. arXiv preprint arXiv:2103.13630, 2021.

[41] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan
Pedram, Mark A Horowitz, and William J Dally. Eie:
efficient inference engine on compressed deep neural
network. ACM SIGARCH Computer Architecture News,
44(3):243–254, 2016.

[42] Song Han, Huizi Mao, and William J Dally. Deep com-
pression: Compressing deep neural networks with prun-
ing, trained quantization and huffman coding. arXiv
preprint arXiv:1510.00149, 2015.

[43] Song Han, Jeff Pool, John Tran, and William J Dally.
Learning both weights and connections for efficient neu-
ral networks. arXiv preprint arXiv:1506.02626, 2015.

[44] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang.
Filter pruning via geometric median for deep convolu-
tional neural networks acceleration. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 4340–4349, 2019.

[45] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li,
and Song Han. Amc: Automl for model compression
and acceleration on mobile devices. In Proceedings of
the European Conference on Computer Vision (ECCV),
pages 784–800, 2018.

[46] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[47] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dry-
den, and Alexandra Peste. Sparsity in deep learning:
Pruning and growth for efficient inference and training
in neural networks. arXiv preprint arXiv:2102.00554,
2021.

[48] Changwan Hong, Aravind Sukumaran-Rajam, Israt Nisa,
Kunal Singh, and P Sadayappan. Adaptive sparse tiling
for sparse matrix multiplication. In Proceedings of the
24th Symposium on Principles and Practice of Parallel
Programming, pages 300–314, 2019.

228 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

[49] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco
Andreetto, and Hartwig Adam. Mobilenets: Efficient
convolutional neural networks for mobile vision appli-
cations. arXiv preprint arXiv:1704.04861, 2017.

[50] Wei-Ning Hsu, Benjamin Bolte, Yao-Hung Hubert Tsai,
Kushal Lakhotia, Ruslan Salakhutdinov, and Abdelrah-
man Mohamed. Hubert: Self-supervised speech repre-
sentation learning by masked prediction of hidden units.
arXiv preprint arXiv:2106.07447, 2021.

[51] Shankar Iyer, Nikhil Dandekar, Kornél Csernai, et al.
First quora dataset release: Question pairs. data. quora.
com, 2017.

[52] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong
Zhu, Matthew Tang, Andrew Howard, Hartwig Adam,
and Dmitry Kalenichenko. Quantization and training
of neural networks for efficient integer-arithmetic-only
inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 2704–
2713, 2018.

[53] Fredrik Kjolstad, Shoaib Kamil, Stephen Chou, David
Lugato, and Saman Amarasinghe. The tensor algebra
compiler. Proceedings of the ACM on Programming
Languages, 1(OOPSLA):1–29, 2017.

[54] Yann LeCun, John S Denker, and Sara A Solla. Opti-
mal brain damage. In Advances in neural information
processing systems, pages 598–605, 1990.

[55] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on con-
nection sensitivity. arXiv preprint arXiv:1810.02340,
2018.

[56] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet,
and Hans Peter Graf. Pruning filters for efficient con-
vnets. arXiv preprint arXiv:1608.08710, 2016.

[57] Darryl Lin, Sachin Talathi, and Sreekanth Annapureddy.
Fixed point quantization of deep convolutional networks.
In International conference on machine learning, pages
2849–2858. PMLR, 2016.

[58] Ning Liu, Xiaolong Ma, Zhiyuan Xu, Yanzhi Wang,
Jian Tang, and Jieping Ye. Autocompress: An automatic
dnn structured pruning framework for ultra-high com-
pression rates. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 4876–4883,
2020.

[59] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,
Shoumeng Yan, and Changshui Zhang. Learning effi-
cient convolutional networks through network slimming.
In Proceedings of the IEEE International Conference
on Computer Vision, pages 2736–2744, 2017.

[60] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue,
Youshan Miao, Wei Cui, Wenxiang Hu, Fan Yang, Lintao
Zhang, and Lidong Zhou. Rammer: Enabling holistic
deep learning compiler optimizations with rtasks. In
14th {USENIX} Symposium on Operating Systems De-
sign and Implementation ({OSDI} 20), pages 881–897,
2020.

[61] Huizi Mao, Song Han, Jeff Pool, Wenshuo Li, Xingyu
Liu, Yu Wang, and William J Dally. Exploring the reg-
ularity of sparse structure in convolutional neural net-
works. arXiv preprint arXiv:1705.08922, 2017.

[62] Paul Michel, Omer Levy, and Graham Neubig. Are
sixteen heads really better than one? arXiv preprint
arXiv:1905.10650, 2019.

[63] Sharan Narang, Eric Undersander, and Gregory Diamos.
Block-sparse recurrent neural networks. arXiv preprint
arXiv:1711.02782, 2017.

[64] Keiron O’Shea and Ryan Nash. An introduction
to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

[65] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara,
Antonio Puglielli, Rangharajan Venkatesan, Brucek
Khailany, Joel Emer, Stephen W Keckler, and William J
Dally. Scnn: An accelerator for compressed-sparse con-
volutional neural networks. ACM SIGARCH Computer
Architecture News, 45(2):27–40, 2017.

[66] Eunhyeok Park, Dongyoung Kim, and Sungjoo Yoo.
Energy-efficient neural network accelerator based on
outlier-aware low-precision computation. In 2018
ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA), pages 688–698. IEEE,
2018.

[67] Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-
amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett, editors, Advances in Neural Informa-
tion Processing Systems 32, pages 8024–8035. Curran
Associates, Inc., 2019.

[68] Ali Pinar and Michael T Heath. Improving performance
of sparse matrix-vector multiplication. In SC’99: Pro-
ceedings of the 1999 ACM/IEEE Conference on Super-
computing, pages 30–30. IEEE, 1999.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 229

[69] Ram Rangan, Mark W Stephenson, Aditya Ukarande,
Shyam Murthy, Virat Agarwal, and Marc Blackstein.
Zeroploit: Exploiting zero valued operands in interactive
gaming applications. ACM Transactions on Architecture
and Code Optimization (TACO), 17(3):1–26, 2020.

[70] Ryan Senanayake, Changwan Hong, Ziheng Wang,
Amalee Wilson, Stephen Chou, Shoaib Kamil, Saman
Amarasinghe, and Fredrik Kjolstad. A sparse iteration
space transformation framework for sparse tensor alge-
bra. Proceedings of the ACM on Programming Lan-
guages, 4(OOPSLA):1–30, 2020.

[71] Mark Stephenson and Ram Rangan. Pgz: automatic
zero-value code specialization. In Proceedings of the
30th ACM SIGPLAN International Conference on Com-
piler Construction, pages 36–46, 2021.

[72] Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Met-
zler. Efficient transformers: A survey. arXiv preprint
arXiv:2009.06732, 2020.

[73] Naftali Tishby, Fernando C Pereira, and William Bialek.
The information bottleneck method. arXiv preprint
physics/0004057, 2000.

[74] Frederick Tung and Greg Mori. Clip-q: Deep net-
work compression learning by in-parallel pruning-
quantization. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 7873–
7882, 2018.

[75] Frederick Tung and Greg Mori. Deep neural network
compression by in-parallel pruning-quantization. IEEE
transactions on pattern analysis and machine intelli-
gence, 42(3):568–579, 2018.

[76] Hanrui Wang, Zhekai Zhang, and Song Han. Spatten: Ef-
ficient sparse attention architecture with cascade token
and head pruning. In 2021 IEEE International Sym-
posium on High-Performance Computer Architecture
(HPCA), pages 97–110. IEEE, 2021.

[77] Kuan Wang, Zhijian Liu, Yujun Lin, Ji Lin, and Song
Han. Haq: Hardware-aware automated quantization
with mixed precision. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 8612–8620, 2019.

[78] Ying Wang, Yadong Lu, and Tijmen Blankevoort. Dif-
ferentiable joint pruning and quantization for hardware
efficiency. In European Conference on Computer Vision,
pages 259–277. Springer, 2020.

[79] Ziheng Wang. Sparsert: Accelerating unstructured spar-
sity on gpus for deep learning inference. In Proceedings
of the ACM International Conference on Parallel Ar-
chitectures and Compilation Techniques, pages 31–42,
2020.

[80] Samuel Williams, Leonid Oliker, Richard Vuduc, John
Shalf, Katherine Yelick, and James Demmel. Optimiza-
tion of sparse matrix-vector multiplication on emerging
multicore platforms. In SC’07: Proceedings of the 2007
ACM/IEEE Conference on Supercomputing, pages 1–12.
IEEE, 2007.

[81] Chenfei Wu, Jian Liang, Lei Ji, Fan Yang, Yuejian Fang,
Daxin Jiang, and Nan Duan. NÜWA: Visual synthe-
sis pre-training for neural visual world creation. arXiv
preprint arXiv:2111.12417, 2021.

[82] Yuanzhong Xu, HyoukJoong Lee, Dehao Chen, Blake
Hechtman, Yanping Huang, Rahul Joshi, Maxim Krikun,
Dmitry Lepikhin, Andy Ly, Marcello Maggioni, et al.
Gspmd: General and scalable parallelization for ml
computation graphs. arXiv preprint arXiv:2105.04663,
2021.

[83] Haichuan Yang, Shupeng Gui, Yuhao Zhu, and Ji Liu.
Automatic neural network compression by sparsity-
quantization joint learning: A constrained optimization-
based approach. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 2178–2188, 2020.

[84] Jie Amy Yang, Jianyu Huang, Jongsoo Park, Ping
Tak Peter Tang, and Andrew Tulloch. Mixed-precision
embedding using a cache. arXiv e-prints, pages arXiv–
2010, 2020.

[85] Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, Cheng-
I Jeff Lai, Kushal Lakhotia, Yist Y Lin, Andy T Liu, Jia-
tong Shi, Xuankai Chang, Guan-Ting Lin, et al. Superb:
Speech processing universal performance benchmark.
arXiv preprint arXiv:2105.01051, 2021.

[86] Tien-Ju Yang, Andrew Howard, Bo Chen, Xiao Zhang,
Alec Go, Mark Sandler, Vivienne Sze, and Hartwig
Adam. Netadapt: Platform-aware neural network adap-
tation for mobile applications. In Proceedings of the Eu-
ropean Conference on Computer Vision (ECCV), pages
285–300, 2018.

[87] Zhewei Yao, Linjian Ma, Sheng Shen, Kurt Keutzer, and
Michael W Mahoney. Mlpruning: A multilevel struc-
tured pruning framework for transformer-based models.
arXiv preprint arXiv:2105.14636, 2021.

[88] Zhuliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang,
and Lanshun Nie. Balanced sparsity for efficient dnn in-
ference on gpu. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 5676–5683,
2019.

[89] Takashi Yoshida and Kenichi Ohki. Natural images are
reliably represented by sparse and variable populations

230 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

of neurons in visual cortex. Nature communications,
11(1):1–19, 2020.

[90] Yiren Zhao, Xitong Gao, Daniel Bates, Robert Mullins,
and Cheng-Zhong Xu. Focused quantization for sparse
cnns. arXiv preprint arXiv:1903.03046, 2019.

[91] Lianmin Zheng, Chengfan Jia, Minmin Sun, Zhao Wu,
Cody Hao Yu, Ameer Haj-Ali, Yida Wang, Jun Yang,
Danyang Zhuo, Koushik Sen, et al. Ansor: Generating
high-performance tensor programs for deep learning.
In 14th {USENIX} Symposium on Operating Systems
Design and Implementation ({OSDI} 20), pages 863–
879, 2020.

[92] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou,
He Wen, and Yuheng Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low
bitwidth gradients. arXiv preprint arXiv:1606.06160,
2016.

[93] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie.
Sparse tensor core: Algorithm and hardware co-design
for vector-wise sparse neural networks on modern gpus.
In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 359–371,
2019.

[94] Michael Zhu and Suyog Gupta. To prune, or not to prune:
exploring the efficacy of pruning for model compression.
arXiv preprint arXiv:1710.01878, 2017.

[95] Ling Zhuo and Viktor K Prasanna. Sparse matrix-vector
multiplication on fpgas. In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-
programmable gate arrays, pages 63–74, 2005.

USENIX Association 16th USENIX Symposium on Operating Systems Design and Implementation 231

A Artifact Appendix

Abstract

SparTA proposes the new TeSA abstraction which enables
the sparsity optimization across the compiler stack. This
artifact reproduces the main results of the evaluation on
NVIDIA 2080Ti and A100.

Scope

This artifact will validate the following claims:

• End-to-end performance: By reproducing the experi-
ments of Figure 8, 9, 10, 11, we can validate the end-to-
end latency and memory footprint of SparTA claimed in
§5.1.

• Effectiveness of the propagation: By reproducing the
experiments of Figure 14, 15, we can validate the effec-
tiveness of the propagation.

• Effectiveness of the transformation: By reproducing the
experiments of Figure 16, 17, we can validate the effec-
tiveness of the transformation.

• Effectiveness of the specialization: By reproducing the
experiments of Figure 18, we can validate the effective-
ness of the specialization.

• Augmentation of model sparsity exploration: By repro-
ducing the experiments of Figure 20, we can validate
that SparTA can augment the model sparsity exploration
for the algorithms.

Contents

In this artifact, we will reproduce the Figure 8-11, 14-18, 20
on NVIDIA 2080Ti and A100. Each figure has a shell script
to reproduce and visualize the experimental results automati-
cally. In addition, there are many baselines compared in our
evaluation, therefore, we also provide a Dockerfile containing
all dependent environments for 2080Ti and A100 respectively.
Users can quickly set up the experiment environment with the
Dockerfile we provided.

Hosting

The artifact is hosted at https://github.com/microso
ft/SparTA/tree/sparta_artifact. To get the code,
please git clone the SparTA repository and checkout to the
sparta_artifact branch.

Requirements
• Hardware requirements: Figure 17 requires a NVIDIA

A100 GPU and the other Figures requires a NVIDIA
2080Ti GPU.

• Software requirements: Please use docker to build the
image/Dockerfile to set up the environment for 2080Ti
and image/Dockerfile.a100 to set up the environment for
A100.

• CUDA Driver: Larger than 11.2.

Tutorial
Environment setup To set up the environment, please first
clone the code and build the docker image based the Docker-
file we provided. Second, please start a docker instance and
install the SparTA in the python environment. Finally, please
run the init_env.sh to initialize the environment variables and
download the datasets. Listing 1 shows the commands used
to set up the experiment environment.

Listing 1: Commands to set up the environment
1 # get the source code
2 git clone -b sparta_artifact https://github.com/microsoft

/SparTA.git
3 cd SparTA/image
4 # build the docker image
5 sudo docker build . -t artifact
6 # start a docker instance
7 sudo docker run -it --gpus all --shm-size 16G artifact
8
9 # Execute following commands in the docker

instance
10 # install the sparta
11 mkdir workspace && cd workspace
12 git clone https://github.com/microsoft/SparTA && cd

SparTA && git checkout sparta_artifact
13 conda activate artifact
14 python setup.py develop
15 # initialize the environment
16 cd script && bash init_env.sh

Run experiments SparTA provides the end-to-end scripts
to reproduce all the experiments with one command on
NVIDIA 2080Ti and A100 respectively. Listing 2 shows the
commands to start all the experiments. The reproduced results
will be visualized and saved automatically.

Listing 2: Commands to run the experiments
1 # go into the script directory
2 cd script
3 # for 2080Ti
4 bash run_all_2080ti.sh
5 # for A100
6 bash run_all_a100.sh

232 16th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/microsoft/SparTA/tree/sparta_artifact
https://github.com/microsoft/SparTA/tree/sparta_artifact

	Introduction
	Background and Motivation
	SparTA Design
	The TeSA abstraction
	Sparsity Attribute Propagation
	Code Generation with TeSA

	Implementation
	Evaluation
	End-to-End Experiments
	SparTA on CUDA GPUs
	SparTA on Other Accelerators

	Sparsity Attribute Propagation
	Efficient Code Generation with TeSA
	Augmented Model Sparsity Exploration
	Accelerating Sparse Model Training

	Related Works
	Conclusion
	Artifact Appendix

