1968 ACM Turing Lecture
One Man’s View of Computer Science

R, W, HAMMING

Bell Telephone Laboratories, Inc., Murray Hill, New Jersey

ABSTRACT. A number of observations and comments are directed toward suggesting that more
than the usual engineering flavor be given to computer science. The engineering aspect is
important because most present difficulties in this field do not involve the theoretical question
of whether certain things can be done, but rather the practical question of how can they be
accomplished well and simply.

The teaching of computer seience could be made more effective by various alterations, for
exarmple, the inclusion of a laboratory course in programming, the requirement for a strong
minor in something other than mathematics, and more practical coding and less abstract
theory, as well as more seriousness and less game playing.

KEY WORDS AND PHRASES: computer seience, computer engineering, practical programming,
mathematical game-playing, computer technician, computer professional, true-to-life pro-
gramming, computer science curriculum, software, basic research, undirected research, pro-
gramaners’ ethical standards, programmers’ social responsibility

CR CATEGORIES: 1.3, 1.50

Let me begin with a few personal words. When one is notified that he has been
elected the ACM Turing lecturer for the year, he is at first surprised—especially
is the nonacademic person surprised by an ACM award. After a little while the
surprise is replaced by a feeling of pleasure. Still Iater comes a feeling of “Why me?”
With all that has been done and is being done in computing, why single out me and
my work? Well, I suppose that it has to happen to someone each year, and this
time I am the lucky person. Anyway, let me thank you for the honor you have given
to me and by inference to the Bell Telephone Laboratories where I work and which
has made possible so much of what I have done:

The topic of my Turing lecture, “One Man’s View of Computer Science,” was
picked because “What is computer science?” is argued endlessly among people
in the field. Furthermore, as the excellent Curriculum 68 report! remarks in its
introduction, “The Committee believes strongly that a continuing dialogue on the
process and goals of education in computer science will be vital in the years to come.”
Lastly, it is wrong to think of Turing, for whom these lectures were named, as being
exclusively interested in Turing machines; the fact is that he contributed to many
aspects of the field and would probably have been very interested in the topie,
though perhaps not in what I say.

The question “What is computer science?”” actually occurs in many different

t A Report, of the ACM Curriculum Committee on Computer Science; Comm. ACM 11,3 (Mar:
1968); 151-197.

Journal of the Associntion for Computing Machinery, Vol. 18, Neo. 1, January 1989, pp. 3-12.

4 R, W, HAMMING

forms, among which are: What is computer science currently? What can it develop
into? What should it develop into? What will it develop into?

A precise answer cannot be given to any of these. Many years ago an eminent
mathematician wrote a book What is Mathematics and nowhere did he try to de-
fine mathematics, rather he simply wrote mathematics. While you will now and
then find some aspect of mathematics defined rather sharply, the only generally
agreed upon definition of mathematics is “Mathematics is what mathematicians
do”’, which is followed by “Mathematicians are people who do mathematics.” What
is true about defining mathematics is also true about many other fields: there is
often no eclear, sharp definition of the field.

In the face of this difficulty many people, including myself at times, feel that
we should ignore the discussion and get on with dedng it. But as George Forsythe
points out so well? in a recent article, it does matter what people in Washington,
D. C. think computer science is. According to him, they tend to feel that it is a
part of applied mathematics and therefore turn to the mathematicians for advice
in the granting of funds. And it is not greatly different elsewhere; in both Industry
and the universities you can often still see traces of where computing first started,
whether In electrical engineering, physics, mathematics, or even business. Kvi-
dently the picture which people have of a subject can significantly affect its subse-
quent development. Therefore, although we cannot hope to settle the question
definitively, we need frequently to examine and to alr our views on what our sub-
ject is and should become.

In many respects, for me 1t would be more satisfactory to give a talk on some
small, technical point in computer science—it would certainly be easier. But that
is exactly one of the things that I wish to stress—the danger of getting lost in the
details of the field, especially in the coming days when there will be n veritable
blizzard of papers appearing each month in the journals, We must give a good deal
of attention o a broad training in the feld-—1this in the face of the increasing neces-
sity to specialize more and more highly in order to get a thesis problem, publish
many papers, ete. We need to prepare our students for the year 2000 when many
of them will be at the peak of their career. It seems to me to be more true in com-
puter science than in many other fields that “specialization leads to triviality.”

I am sure you have all heard that our scientific knowledge has been doubling
every 15 to 17 vears. I strongly suspect that the rate is now much higher in com-
puter science; certainly it was higher during the past 15 years. In all of our plans:
we must take this growth of information into account and recognize that in a very
real sense we face a “semi-infinite” amount of knowledge. In many respects the
classical concept of a scholar who knows at least 90 percent of the relevant knowl-
edge in his field is a dying concept, Narrower and narrower specialization is not
the answer, since in part the difficulty is in the rapid growth of the interrelation-
ships between fields. It is my private opinion that we need to put relatively more
stress on quality and less on quantity and that the careful, critical, considered
survey articles will often be more significant in advancing the field than new, non-
essential material,

We live in a world of shades of grey, but in order to argue, indeed even to think,
it is often necessary to dichotomize and say “black” or “white”. Of course in doing
* Porgyrme, G. BE. What to do till the computer sclentist comes. dm. Malh. Monthly 76, &
(May 1968), 454-461.

Journsl of she Association for Computing Mashinery, Vol, 16, No. 1, January 1000

One Man’s View of Computer Science 5

so we do violence to the truth, but there seems to be no other way to proceed. I
trust, therefore, that you will take many of my small distinctions in this light—in
a sense, I do not believe them myself, but there seems to be no other simple way of
discussing the matter, ,

For example, let me make an arbitrary distinction between science and engineer-
ing by saying that science is concerned with what is possible while engineering is
concerned with choosing, from among the many possible ways, one that meets a
number of often poorly stated economic and practical objectives. We call the field
“computer science” but I believe that it would be more accurately labeled “com-
puter engineering’” were not this too likely to be misunderstood. So much of what
we do is not a question of can it be done as it is a question of finding a practical
way. It is not usually a question of can there exist a monitor system, algorithm,
scheduler, or compiler, rather it is a question of finding a practical working one
with a reasonable expenditure of time and effort. While I would not change the
name from “computer science” to “computer engineering,” I would like to see
far more of a practical, engineering flavor in what we teach than I usually find in
course outlines,

There is a second reason for asking that we stress the practical side. As far into
the future as I can see, computer science departments are going to need large sums
of money. Now society usually, though not always, is more willing to give money
when it can see practical returns than it is to invest in what it regards as impracti-
cal activities, amusing games, etc. If we are to get the vast sums of money I believe
we will need, then we had better give a practical flavor to our field. As many of you
are well aware, we have already acquired a bad reputation in many areas. There
have been exceptions, of course, but all of you know how poorly we have so far
met the needs for software,

At the heart of computer science lies a technological device, the computing
machine. Without the machine almost all of what we do would become idle specula-
tion, hardly different from that of the notorious Scholastics of the Middle Ages.
The founders of the ACM clearly recognized that most of what we did, or were
going to do, rested on this technological device, and they deliberately included
the word “machinery” in the title. There are those who would like to eliminate
the word, in a sense to symbolically free the field from reality, but so far these ef-
forts have failed. I do not regret the initial choice. I still believe that it is important
for us to recognize that the computer, the information processing machine, is the
foundation of our field.

How shall we produce this flavor of practicality that I am asking for, as well as
the reputation for delivering what society needs at the time it is needed? Perhaps
most important is the way we go about our business and our teaching, though the
regearch we do will also be very important. We need to avoid the bragging of useless-
ness and the game-playing that the pure mathematicians so often engage in. Whether
or not the pure mathematician. is right in claiming that what is utterly useless
today will be useful tomorrow: (and I doubt very muech that he is, in the current
situation), it is simply poor propaganda for raising:the large amounts of money
we need to support the continuing growth-of the field; We need to avoid making
computer science look like pure mathematics: our primary standard for aceeptance
should be experience in the real world, not aesthetics. :

Were I setting up a computer science program; T would give relatively more

Joursalof the Assosiation Tor Computing Machivery, Vol 1, Wo L Jancary 1080

8 R, W, HAMMING

emphasis to laboratory work than does Curriculum 68, and in particular I would
require every computer science major, undergraduate or graduate, to take a labora-
tory course in which he designs, builds, debugs, and documents a reasonably sized
program, perhaps a simulator or a simplified compiler for a particular machine.
The results would be judged on style of programming, practical efficiency, freedom
from bugs, and documentation. If any of these were too poor, I would not let
the candidate pass. In judging his work we need to distinguish clearly between
superficial cleverness and genuine understanding. Cleverness was essential in the
past; it is no longer sufficient.

1 would also require a strong minor in some field other than computer science and
mathematics. Without real experience in using the computer to get useful results
the computer science major is apt to know all about the marvelous tool except how
to use it. Such a person is a mere technician, skilled in manipulating the tool but
with little sense of how and when to use it for its basic purposes. I believe we should
avoid turning out more idiot savants—we have more than enough “computniks”
now to last us a long time. What we need are professionals!

The Curriculum 88 recognized this need for “true-to-life” programming by say-
ing, “This might be arranged through swmmer employment, a cooperative work-
study program, part-time employment in comaputer centers, special projects courses,
or some other appropriate means.” I am suggesting that the appropriate means
is o stiff laboratory course under your own control, and that the above suggestions
of the Committee are rarely going to be effective or satisfactory.

Perhaps the most vexing question in planning a computer science curriculum is
determining the mathematics courses to require of those who major in the field.
Many of us came to computing with a strong background in mathematics and tend
automatically to feel that a lot of mathematics should be required of everyone.
All oo often the teacher tries to make the student into a copy of himself. But it is
easy to observe that in the past many highly rated software people were ignorant
of most of formal mathematics, though many of them seemed to have a natural
talent for mathematics (as it is, rather than as it is so often taught).

In the past I have argued that to require a strong mathematical content for com-
puter science would exclude many of the best people in the field, However, with
the coming importance of scheduling and the allocating of the resources of the
computer, 1 have had to reconsider my opinion. While there is some evidence that
part of this will be ineorporated into the hardware, I find it difficult to believe that
there will not be for a long time {meaning at least five years) a lot of scheduling
and allocating of resources in software, If this is to be the pattern, then we need
to consider training in this field. If we do not give such training, then the computer
science major will find that he is a technician who is merely programming what
others tell him to do. Furthermore, the kinds of programming that were regarded
in the past as being great often depended on cleverness and trickery and required
little or no formal mathematics. This phase seems 10 be passing, and T am forced
to believe that in the future a good mathematical background will be needed if
our graduates are to do siguificant work.

History shows that relatively few people can learn much new matheratios in
their thirties, let alone later in lfe; so that if mathematies is going to play a signifi-
cant role in the future, we need 1o give the students mathematical training while
they are in school. We can, of course; evade the issue for the moment by providing

Fournal of the Association for Computing Machinery, Vol 186, Mo, 1, Janusry 1969

One Man’s View of Computer Science 7

two parallel paths, one with and one without mathematics, with the warning that
the nonmathematical path leads to a dead end so far as further university fraining
is concerned (assuming we believe that mathematics is essential for advanced
training in computer science).

Once we grant the need for a lot of mathematics, then we face the even more
difficult task of saying specifically which courses. In spite of the numerical analysts’
claims for the fundamental importance of their field, a surprising amount of com-
puter science activity requires comparatively little of it. But I believe we can de-
fend the requirement that every computer science major take at least one course
in the field. Our difficulty lies, perhaps, in the fact that the present arrangement of
formal mathematics courses is not suited to our needs as we presently see them. We
seem to need some abstract algebra; some queuing theory; a lot of statistics, in-
cluding the design of experiments; a moderate amount of probability, with perhaps
some elements of Markov chains; parts of information and coding theory; and a
little on bandwidth and signalling rates, some graph theory, ete., but we also know
that the field is rapidly changing and that tomorrow we may need complex variables,
topology, and other topics.

As T said, the planning of the mathematics courses is probably the most vexing
part of the curriculum. After a lot of thinking on the matter, I currently feel that
if our graduates are to make significant contributions and not be reduced to the
level of technicians running a tool as they are told by others, then it is better to
give them too much mathematics rather than too little. I realize all too well that
this will exclude many people who in the past have made contributions, and I am
not happy about my conclusion, but there it is. In the future, success in the field
of computer science is apt to require a command of mathematics.

One of the complaints regularly made of computer science curriculums is that
they seem to almost totally ignore business applications and Cosor. I think that
it is not a question of how important the applications are, nor how widely a lan-
guage like CosoL is used, that should determine whether or not it is taught in the
computer science department; rather, I think it depends on whether or not the
business administration department can do a far better job than we can, and whether
or not what is peculiar to the business applications is fundamental to other aspects
of computer science. And what I have indicated about business applications applies,
1 believe, to most other fields of application that can be taught in other depart-
ments. I strongly believe that with the limited resources we have, and will have for
a long time to come, we should not attempt to teach applications of computers
in the computer science department—rather, those applications should be taught
in their natural environments by the appropriate departments.

The problem of the role of analog computation in the computer science curricu-
Tum is not quite the same as that of applications to special fields, since there is really
no place else for it to go. There is little doubt that analog computers are economi-
cally important and will continue to be so for some time. But there is also little
doubt that the field, even including hybrid computers, does not have at present
the intellectual ferment that digital computation does. Furthermore, the essence
of good analog computation lies in the understanding of the physical limitations
of the equipment and in the peculiar art of scaling, especially in the time variable,
which is quite foreign to the rest of computer science. It tends, therefore, to be
ignored rather than to be rejected; it is either not taught or else it is an elective, and

Journal of fhe Assoeistion for Computing Machinery, Vol 16, No. 1, January 1068

8 R, W. HAMMING

this is probably the best we can expect ab present when the center of interest is the
general purpose digital computer.

At present there is g flavor of “game-playing’” about many courses in computer
seience. | hear repeatedly from friends who want to hire good software people that
they have found the specialist in computer science is someone they do not want,
Their experience is that graduates of our programs seem to be mainly interested
in playing games, making faney programs that really do not work, writing trick
programs, ete. and are unable to discipline their own efforts so that what they say
they will do gets done on time and in practical form. If I had heard this complaing
merely once from a friend who fancied that he was a hard-boiled engineer, then
1 would dismiss it; unfortunately I have heard it from a number of capable, intel-
ligent, understanding people. As I earlier said, since we have such a need for finaneial
support for the current and future expansion of our facilities, we had better con-
sider how we can avoid such remarks being made about our graduates in the coming
vears. Are we going fto continue to turn out a product that is not wanted in many
places? Or are we going to turn out responsible, effective people who meet the real
needs of our society? 1 hope that the latter will be increasingly true; hence my
emphasis on the practical aspects of computer science.

One of the reasons that the computer scientists we turn out are more interested
in “cute” programming than in results is that many of our courses are being taught
by people who have the instincts of a pure mathematician. Let me make another
arbitrary distinction which is only partially true. The pure mathematician starts
with the given problem, or else some variant that he has made up from the given
problem, and produces what he says is an answer. In applied mathematics it is
necessary to add two crucial steps (1) an examination of the relevance of the mathe-
matical model to the actual situation, and (2) the relevance of, or if you wish the
interpretation of, the results of the mathematical model back to the original situa-
tion, This is where there is the sharp difference: The applied mathematician must
be willing to stake part of his reputation on the remark “If you do so and so you
will observe such and such very closely and therefore you are justified in going
ahead and spending the money, or effort, to do the job as indicated,”” while the pure
mathematician usually shrugs his shoulders and says, “That is none of my responsi-
bility.” Someone must take the responsibility for the decision to go ahead on one
path or another, and it seems to me that he who does assume this responsibility
will get the greaster credit, on the average, as it is doled out by society. We need,
therefors, in our teaching of computer science, fo stress the assuming of responsi-
bility for the whele problem and not just the cute mathematical part. This is another
reason why I have emphasized the engineering aspects of the various subjects and
fried o minimize the purely mathematical aspects.

The difficulty is, of course, that so many of our teachers in computer science are
pure mathematicians and that pure mathematics is 8o much easier to teach than
is applied work. There are relatively few teachers available to teach in the style
I am asking for. This means we must do the best we can with what we have, but
we should be conscious of the direction we want to take and that we want, where
posaible, to give a practical favor of responsibility and engineering rather than
mere existence of results,

It is unfortunate that in the early stages of computer science it is the talent and
ability to handle a ses of minutiae which is important for suceess. But if the student

Journal of the Assoriation for Compnting Machinery, Vol 18, Neo. 1, Janusry 1960

One Man’s View of Computer Science 9

is to grow into someone who can handle the larger aspects of computer science,
then he must have, and develop, other talents which are not being used or exer-
cised at the early stages. Many of our graduates never make this second step. The
situation 18 much like that in mathematics: in the early years it is the command
of the trivia of arithmetic and formal symbol manipulation of algebra which is
needed, but in advanced mathematics a far different talent is needed for success.
As T sald, many of the people in computer science who made their mark in the
area. where the minutiae are the dominating feature do not develop the larger
talents, and they are still around teaching and propagating their brand of detail.
What is needed in the higher levels of computer science is not the “black or white”
mentality that characterizes so much of mathematics, but rather the judgment
and balancing of conflicting aims that characterize engineering.

T have o far skirted the field of software, or, as a friend of mine once said, “ad
hoc-ery.” There is so much truth in his characterization of software as ad hoc-ery
that it iz embarrassing to discuss the topic of what to teach in software courses.
8o much of what we have done has been in an ad hoc fashion, and we have been
under so much pressure to get something going as soon as possible that we have
precious little which will stand examination by the skeptical eye of a scientist or
engineer who asks, “What content is there in software?” How few are the difficult
ideas to grasp in the field! How much is mere piling on of detail after detail without
any careful analysis! And when 50,000-word compilers are later remade with per-
haps 5000 words, how far from reasonable must have been the early ones!

I am no longer a software expert, so it is hard for me to make serious suggestions
about what to do in the software field, yet I feel that all too often we have been
satisfied with such a low level of quality that we have done ourselves harm in the
process. We seem not to be able to use the machine, which we all believe is a very
powerful tool for manipulating and transforming information, to do our own tasks
in this very field. We have compilers, assemblers, monitors, etc. for others, and yet
when I examine what the typical software person does, I am often appalled at how
little he uses the machine in his own work. I have had enough minor successes
in arguments with software people to believe that I am basically right in my in-
sistence that we should learn to use the machine at almost every stage of what we
are doing. Too few software people even try to use the machine on their own work.
There are dozens of situations where a little machine computation would greatly
aid the programmer. I recall one very simple one where a nonexpert with a very
long ForTran program from the outside wanted to convert it to our local use, so
he wrote & simple ForTRAN program to locate all the input-output statements and
all the library references. In my experience, most programmers would have per-
sonally scanned long listings of the program to find them and with the usual human
fallibility missed a couple the first time. I believe we need to convince the computer
expert that the machine is his most powerful tool and that be should learn to use
it as much as he can rather than personally scan the long listings of symbols as I
see being done everywhere I go around the country. If what I am reporting is at
all true, we have failed to teach this in the past. Of course some of the best people
do in fact use the computer as I am recommending; my observation is that the run-
of-the-mill programmers do not do so.

- To parody our current methods of teaching programming, we give beginners
a grammar and a dictionary and tell them that they are now great writers. We

Journal of $he Assobistion for Compubing Machinery, Vol 18, Nodl, Jenuary 1588

10 R, W. HAMMING

seldom, If ever, give them any serious training in style. Indeed I have watched for
vears for the appearance of a Manual of Style and/or an Anthology of Good Program-
ming and have as vet found none. Like writing, programming is a difficult and
complex art., In both writing and programming, compactness is desirable but in
both vou can easily be too compact. When you consider how we teach good writing
~~~~~~~ the exercises, the compositions, and the talks that the student gives and s graded
on by the teacher during his training in English-—~it seems we have been very remiss
in this matter of teaching style in programming. Unfortunately only few program-
mers who admit that there is something in what I have called “style” are willing
to formulate their feelings and to give specific examples. As a result, few program-
mers write in Howing poetry; most write in halting prose.

1 doubt that style in programming is tied very closely to any particular machine
or language, any more than good writing in one natural language is significantly
different than it is in another. There are, of course, particular idioms and details
in one language that favor one way of expressing the idea rather than another,
but the essentials of good writing seem to transcend the differences in the Western
Furopean languages with which I am familiar. And I doubt that it is much different
for most general purpose digital machines that are available these days.

Since I am apt to be misunderstood when I say we need more of an engineering
flavor and less of a seience one, I should perhaps point out that T eame to computer
science with a Ph.D. in pure mathematics, When I ask that the training in software
be given a more practical, engineering flavor, I also loudly proclaim that we have
too little understanding of what we are doing and that we desperately need to de-
velop relevant theories.

Indeed, one of my major complaints about the computer field is that whereas
Newton could say, “If T have seen a little farther than others it is because 1 have
stood on the shoulders of giants,” 1 am forced to say, “Today we stand on each
other’s feet.” Perhaps the central problem we face in all of computer science is
how we are to get to the situation where we build on top of the work of others
rather than redoing so much of it in a trivially different way, Science is supposed
to be cumulative, not almost endless duplication of the same kind of things.

This brings me to another distinetion, that between undirected research and
basic research. Iveryone likes to do undirected research and most people like to
believe that undirected research is basic research. 1 am choosing to define basic
research as being work upon which people will in the future base a lot of their work.
After all, what else can we reasonably mean by basic research other than work upon
which a lot of later work is based? I believe experience shows that relatively few
people are capoble of doing basic research. While one cannot be certain that a
particular piece of work will or will not turn out to be basic, one can often give
fairly accurste probabilities on the outcome. Upon examining the question of the
nature of basic research, I have come to the conclusion that what determines
whether or not & piece of work has much chance o become basic is not so much
the question asked as it is the way the problem is attacked.

Numerical analysis is the one venerable part of our curriculum that is widely
accepted as having some content. Yet all too often there is some justice in the re-
mark that many of the textbooks are written for mathematicians and are in fact
rouch more mathematics than they are practical computing. The reason is, of
course, that many of the people in the field are converted, or rather only partially

Jonprnal of the Assosiation for Compuling Machinery, Vol, 18, No, 1, Janvery 1969



Une Man’s View of Computer Science 11

converted, mathernaticians who still have the unconscious standards of mathe-
matics in the back of their minds. I am sure many of you are familiar with my
objections® along these lines and I need not repeat them here.

It has been remarked to me by several persons, and I have also observed, that
many of the courses in the proposed computer science curriculurn are padded. Often
they appear to cover every detail rather than confining themselves to the main
ideas. We do not need to teach every method for finding the real zeros of a function:
we need to teach a few typical ones that are both effective and illustrate basic con-
cepts in numerical analysis. And what I have just said about numerical analysis
goes even more for software courses. There do not seem to me (and to some others)
to be enough fundamental ideas in all that we know of software to justify the large
amount of time that is devoted to the topic. We should confine the material we
teach to that which is important in ideas and technique—the plodding through a
mass of minutiae should be avoided.

Let me now turn to the delicate matter of ethics. It has been observed on a
number of oceasions that the ethical behavior of the programmers in accounting
installations leaves a lot to be desired when compared to that of the trained account-
ing personnelt We seem not to teach the “sacredness’ of information about people
and private company material. My limited observation of computer experts is
that they have only the slightest regard for these matters. For example, most
programmers believe they have the right to take with them any program they wish
when they change employers. We should look at, and copy, how ethical standards
are incorporated into the traditional accounting courses (and elsewhere), because
they turn out a more ethical product than we do. We talk a lot in public of the
dangers of large data banks of personnel records, but we do not do our share at
the level of indoctrination of our own computer science majors.

Along these lines, let me briefly comment on the matter of professional standards.
We have recently had a standard published® and it seems to me to be a good one,
but again 1 feel that 1 am justified in asking how this is being incorporated into
the training of our students, how they are to learn to bebave that way. Certainly
it is not sufficient to read it to the class each morning; both ethical and professional
behavior are not effectively taught that way. There is plenty of evidence that
other professions do manage to communicate to their students professional stand-
ards which, while not always followed by every member, are certainly a lot better
instilled than those we are presently providing for our students. Again, we need
to examine how they do this kind of training and try to adapt their methods to our
needs.

Lastly, let me mention briefly the often discussed topic of social responsibility.
We have sessions at meetings on this topic, we discuss it in the halls and over coffee
and beer, but again 1 ask, “How is it being incorporated into our training program?”’
The fact that we do not have exact rules to follow is not sufficient reason for omit-
ting all training in this important matter, ‘

1 believe these three topics—ethics, professional behavior, and social responsi-
bility—must be incorporated into the computer science curriculum. Personally
P Hamming, R, 'W. Numerical analysis vs. mathematics. Science 148 (Apx. 1965), 473475,
¢ Cammy, J. L., anp Dogerry, W, A. Ethical Standards of the Accounting Profession. Am.

Inst. CPAs., 1966,
P Comm. ACM 11, 3 (Mar. 1968), 198-220.

Journalof the Association for Cotputing Machingry, Vol 18, Mo, 1, Jandary 1068



12 B, W. HAMMING

1 do not believe that a separate course on these topics will be effective. From what
little T understand of the matter of teaching these kinds of things, they can best
be taught by example, by the behavior of the professor. They are taught in the
odd moments, by the way the professor phrases his remarks and handles himself,
Thus it is the professor who must first be made conseious that a significant part of
his teaching role is in communicating these delicate, elusive matters and that he is
not justified in saying, “They are none of my business.” These are things that must
be taught constantly, all the time, by everyone, or they will not be taught at all,
And if they are not somehow taught to the majority of our students, then the field
will justly keep its present reputation (which may well surprise you if you ask your
colleagues in other departments for their frank opinions).

In closing, let me revert to & reasonable perspective of the computer science
field. The field is very new, it has had to run constantly just to keep up, and there
has been little time for many of the things we have long known we must some day
do. But at least in the universities we have finally arrived: we have established
separate departments with reasonable courses, faculty, and equipment., We are
now well started, and it is time to deepen, strengthen, and improve our field so that
we can be justly proud of what we teach, how we teach it, and of the students we
turn out. We are not engaged in turning out technicians, idiot savants, and comput-
niks; we know that in this modern, complex world we must turn out people who can
play responsible major roles in our changing society, or else we must acknowledge
that we have failed in our duty as teachers and leaders in this exciting, important
field—computer science,

Journal of the Assoeiation for Computing Mackinery, Vol. 18, No. 1, Janusry 1065



