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Abstract—We are often faced with a non-trivial task of
designing incentive mechanisms in the era of Web3. As history
has shown, many Web3 services failed mostly due to the lack of a
rigorous incentive mechanism design based on token economics.
However, traditional mechanism design, where there is an as-
sumption that the users of services strategically make decisions so
that their expected profits are maximized, often does not capture
their real behavior well as it ignores humans’ psychological bias
in making decisions under uncertainty. In this paper, we propose
an incentive mechanism design for crypto-enabled services using
behavioral economics. Specifically, we take an example of crypto
lottery game in this work and incorporate a seminal work of
cumulative prospect theory into its lottery game mechanism (or
rule) design. We designed four mechanisms and compared them
in terms of utility, a metric of how appealing a mechanism
is to participants, and a game operator’s expected profit. Our
approach is generic and will be applicable to a wide range of
crypto-based services where a decision has to be made under
uncertainty.

Index Terms—Token economics, lottery game mechanism de-
sign, behavioral economics, cumulative prospect theory

I. INTRODUCTION

We are often faced with a non-trivial task of designing
incentive mechanisms in the era of Web3. The very first
blockchain, Bitcoin, also incorporates incentive mechanism
into its core consensus algorithm dubbed proof-of-work, where
miners compete with each other in its block generation process
in return to cryptocurrency. A simple yet elegant incentive
mechanism was designed by Nakamoto behind the success
of Bitcoin [1]. Now that tokens are easily issued via smart
contracts (e.g. via ERC-20 (Ethereum Request for Comments
20)), a large number of new crypto-based services emerged.
However, as history has shown, many cryptocurrencies failed
mostly due to the lack of a rigorous incentive mechanism
design based on token economics [2].

Mechanism design, a field of microeconomics and game
theory, helps us derive an optimal mechanism where desired
objectives are achieved by incentives. Desired objectives here
mean that a service, application, or system work as intended by
its operators. In the mechanism design, we start with modeling
entities involved in the system such as operators and users. We
then devise entities’ profit or utility, which is often derived by
subtracting costs from rewards. In the example of Bitcoin’s

This work was partially supported by the Grant KAKENHI (No.18K18162)
from MEXT/JSPS, Japan.

mining, incentives are the rewards of newly minted Bitcoins
and transaction fees involved in the block, and costs are
electric cost consumed by mining. The traditional mechanism
design assumes that entities strategically make decisions so
that their expected profits are (mathematically) maximized.
However, this often does not explain their real behavior well
as it ignores humans’ psychological bias in making decisions
under uncertainty. For instance, gamblers play a lottery even
though they know that its expectation is negative. Hence, we
need an alternative approach to better capture participants’
behavior in designing a mechanism.

In this paper, we propose an incentive mechanism de-
sign for crypto-enabled services using behavioral economics.
Behavioral economics combines elements of economics and
psychology to understand how and why people behave the
way they do in the real world [3]. Cumulative prospect theory
(CPT) is a seminal work of behavioral economics that captures
humans’ bias in making decisions under risk [4]. The key
idea of applying CPT is to “transform” traditional expectation
functions (i.e. utility and probability) so that humans’ bias
is better explained, and we will revisit this with a detailed
explanation in Section IV. We take an example of crypto
lottery game in this work and leverage CPT to design profitable
lottery game mechanism for a game operator. We design four
mechanisms and compare them in terms of utility, a metric
of how appealing a mechanism is for participants, and a
game operator’s expected profit. We rigorously test possible
parameters and functions of CPT to identify the conditions
where the game is appealing to participants and profitable for
the game operator.

The contributions of our work are as follows.

• To the best of our knowledge, we are the first to apply
behavioral economics to mechanism design in the crypto-
based service domain.

• Our approach is generic and will be applicable to a wide
range of crypto-based services where a decision has to
be made under uncertainty.

The rest of this paper is organized as follows: Section II
describes the problem statement. Section III presents a model
used in this research. Section IV describes the proposed
method. Section V shows numerical results and discusses
novelties and open questions. Section VI concludes this paper.
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TABLE I
NOTATION TABLE.

Symbol Description

Np Number of participants
f Entry fee
r Ratio of amount that an operator takes from collected entry

fees
P Total amount of prizes given to winners (i.e. Np · f · (1− r))
Pj Prize given to the j-th participant
πj Profit of participant who ranked in j-th (i.e. Pj − f )
U(·) Utility function in the EUT
v(·) Value function in the CPT
w(·) Probability weighting function in the CPT
k Ratio of participants that can receive prizes in the top-k

mechanisms

II. PROBLEM STATEMENT

There are few attempts to apply behavioral economics in the
crypto and Web3 domain. As far as we know, the only work
was done by Thoma, which investigated the risk and return
properties of cryptocurrency trading and found that prospect
theory well explains the attractiveness of cryptocurrency trad-
ing [5]. Hence, although it would be beneficial to incorporate
token economics in designing profitable crypto-based services,
none of the work has taken into account human’s behavioral
perspective to their incentive mechanisms.1 We take a first
step towards introducing a powerful “toolset” of behavioral
economics, CPT, to design incentive mechanisms for crypto-
based services. Specifically, we chose a crypto-based lottery
game as its example as some of us are going to launch one.2

The operators of crypto-based lottery games are interested in
how to maximize their profits, and it is quite important to
predict the expected profits of their games. In this regard, it
is vital to understand the behavior of participants. A naive
approach is to design game rules and analyze its expected
profits of operators and participants. Specifically, when a game
rule is given, potential participants need to determine whether
or not they should play it based on the expectation of returns. If
the expectation of returns is positive, participants are expected
to join the game. However, as it will be shown later, this
naive approach would not explain their actual behavior well as
their action is often biased by psychological factors [10]. The
objectives of our research are to suggest designing profitable
crypto-based lotteries with behavioral economics and to show
how to quantify its goodness with numerical analysis.

III. MODEL

We first model the entities and game design that we analyze
in this work. TABLE I lists the notation used in this paper.

1Of course, the classical approach based on expected utility maximization
would work fine when such a human bias is not involved.

2There exist plenty of work that studies gambles from an economical
perspective (e.g. [6], [7], [8], [9]). It is challenging to properly cite them
here. Yet, one of the closest works is done by Tang et al. that analyzed the
pricing and design of three lotteries, namely a single prize, multiple equal
prizes, and multiple weighted prizes, with CPT [6]. The optimal pricing of
each lottery was derived by solving the first- and second-order conditions of
lottery buyers’ value function, maximizing their utilities.

A. Entities

There are two entities, namely a game operator and partici-
pants. An operator first determines a lottery game rule. Given
a rule, participants determine whether or not to join a game.

B. Lottery Games

We define our generic lottery game as follows. A participant
needs to pay an entree fee f to join a game. We assume that
participants are ordered by their ranks at the end of a game.
The j-th ranker will be given a prize Pj , and P1 ≥ P2 ≥
· · · ≥ PNp

≥ 0 where
∑Np

j=1 Pj = P . The source of prizes is
collected entry fees. An operator of the game takes r of the
total amount of entry fees, say r = 10%, for their revenue.

One such lottery game example is a top growth rate game
where some top participants can gain prizes based on their
portfolios’ growth rate at the end of a game period.3 Partici-
pants are to invest cryptocurrencies during a game period, and
compete with each other in their return on investment. We
assume that no one can predict the future price of cryptocur-
rencies and that the rankings of participants’ growth rates are
determined by random sampling from a uniform distribution.
As we only need to determine the ranking of participants’
growth rates, when we let θ ∈ [0, 1] denote the type of a
participant (or a relative competitiveness among participants),
the smaller θ the higher chance of being ranked in a higher
position (and vice versa). As θ is assumed to follow a uniform
distribution, its cumulative density function is simply denoted
as F (θ) = θ. Note that θ is a priori unknown; it is revealed
when rankings are determined, meaning that no participant
knows his/her own θ at the time of joining a game. Hence,
what participants can strategically determine is whether or not
to join a game before it starts given a game rule or mechanism,
and it thus can be seen as a lottery game.

C. Profits

The profit of operator and participants can be derived as
follows. The operator’s profit (revenue) can be obtained by
multiplying the number of participants Np by their entry fees
f and how much he/she takes r.

Np · f · r. (1)

f and r can be determined by an operator while Np cannot.
Hence, an operator has to determine the mechanism that more
participants will join (i.e. larger Np) when f and r are fixed.

On the other hand, the profit of a participant who ended up
j-th position is determined by their rankings of growth profit.4

πj = Pj − f. (2)

For an operator to predict if participants will join a game, a
naive approach would be to calculate the expectation of their
profit and check if it is positive. More specifically, expected
utility theory (EUT) is often used to analyze the choice and

3We will test and deploy this particular game as a service.
4As gamblers enjoy the game itself, a utility function may need to include

positive factors of “excitement” and “entertainment” [11]. However, we simply
assume that the positive factor of profit only comes from a game’s prize.



behavior of players. In the EUT, they make decisions so
that their expected utilities are maximized. A utility here
means a value of satisfaction given an outcome. For instance,
when a participant receives Pj , his/her utility is represented
as a conversion of Pj to U(Pj). A utility function U(·) is
increasing, but its curvature is determined by a player’s risk
preference (e.g. curvature is concave when a player is risk-
averse while it is linear (U(πj) = πj) when a player is risk-
neutral). Hence, an expected utility is represented as follows.

Np∑
j=1

pjU(πp) =
1

Np

Np∑
j=1

U(πp) (3)

Note that when a participant is assumed to be risk-neutral, the
expected utility coincides with the expectation.

However, it is obviously unrealistic to assume that partici-
pants follow EUT as this implies that no one will join a game
as proven below.

Lemma 1. Individual Rationality: When (risk-neutral) par-
ticipants are assumed to strategize their participation under
the expected utility assumption, no participant would join the
defined game regardless of its mechanism.

Proof. We first derive a condition that each participant joins
the game. For a rational participant joins the game, E[πp] must
be larger than or equal to zero. However, θ is revealed only
after a participant decides to join a game. Hence, regardless
of the value of θ, we simply find the expected utility of
participants from Eq. 2. As the probability for a participant
to be given each prize is 1/Np for all Pj , the expectation is
derived as follows.

E[πp] =
1

Np

Np∑
j=1

πp,

=
1

Np

Np∑
j=1

Pj − f,

=
1

Np
Np · f · (1− r)− f,

= −r · f. (4)

We used
∑Np

j=1 Pj = Np ·f · (1−r). As −r ·f is negative, the
expected utility of participants is always negative regardless
of the mechanism.

However, as research revealed (e.g. [12], [9]), this would
not capture the actual behavior of participants (or gamblers),
and their behavioral bias must be incorporated into game
mechanism design and analysis.

IV. PROPOSED METHOD

We propose a method for an operator to be able to design a
lottery game mechanism that takes into account participants’
behavioral bias. Again, the objectives of an operator and
participants are both maximizing their profits. In this regard,
an operator needs to determine a profitable mechanism, i.e.
Pj that gives an operator as well as participants more profits,
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Fig. 1. Comparison of prize distribution (Np = 100, and k = 20 for the
top-k mechanisms).

and given a mechanism participants strategically determine
whether or not to join a game under not EUT but CPT.
Although it would be ideal to mathematically derive the most
profitable structure of Pj (1 ≤ j ≤ Np) from participants’
utility under CPT via an appropriate method such as first- and
second-order derivative, it is not easily tractable due to the
complex structure of functions in CPT. Hence, in this paper,
we propose a simple-yet-beneficial method to achieve the goal
of operator. Our method is composed of the following steps.

1) Model entities’ behavior.
2) List mechanisms, i.e. a set of {P1, . . . , Pj , . . . , PNp

}, f
and r.

3) Calculate participants’ utilities with CPT based on the
given mechanisms.

4) Compare the mechanisms in terms of utility to choose
the most profitable mechanism for an operator.

As we have already explained the first step in the previous
section, we detail the remaining three steps.

A. Mechanisms

As we cannot implement all the possible mechanisms, an
operator needs to pick some promising ones. We compare the
following four mechanisms in this paper.

1) Winner-Take-All: The winner-take-all mechanism is to
give the top ranker everything, i.e. P , while others receive
nothing.

Pj =

{
P, if j = 1

0, otherwise.
(5)

2) Top-k (Linear weighting): The top-k mechanism (linear
weighting) is to share P among top-k rankers with linear
weighting.

Pj =

{
P · Np−j+1

Np·(Np+1)/2 , if 1 ≤ j ≤ Np
0, otherwise.

(6)



Note that Np = 1 corresponds to the winner-take-all mecha-
nism.

3) Top-k (Exponential weighting): This mechanism is sim-
ilar to the top-k (linear weighting), but its weights are ex-
ponentially decreasing by ranks, meaning that the top ranker
receives 50% of P and the runner-up receives 25% of P and
so on.

Pj =

{
P
2j , if 1 ≤ j ≤ Np
0, otherwise.

(7)

Note that although weights should be summed up to 1, the
mechanism violates this. However, for sufficiently large Np,∑Np

j=1 1/2
j → 1.

4) Three bands: This mechanism is just for a comparison
purpose. The top ranker receives 1/3 of P , the second to tenth
share another 1/3 of P , 11th to 50th share the remaining 1/3
of P , and the remaining receive nothing. If the number of
participants is below 50, then a game is terminated.

Pj =


P
3 , if j = 1
P
3·9 = P

27 , if 2 ≤ j ≤ 10
P

3·40 = P
120 , if 11 ≤ j ≤ 50

0, otherwise.

(8)

Fig. 1 shows the proposed mechanisms’ prize distribution
versus ranks. In this figure, Np = 100 and k = 20 (20% of
participants will receive prizes for the top-k mechanisms). As
can be seen from this figure, the top-ranker will receive all
prize in the winner-take-all game, whereas top 20 (or 50) out
of 100 will share a prize based on their ranks in the top-k and
three-band mechanisms.

B. Cumulative Prospect Theory

CPT is one of the powerful theory that incorporates humans’
decision making bias under uncertainty into expected utility
calculation. Let us give a simple example that violates the
theory of simple expectation maximization. If we have two
lotteries, (i) 50% of chance of winning $200 and 50% change
of losing $100 and (ii) 100% chance of winning $49, and
ask players which to play. Many players would choose the
latter (i.e. a lottery that a player is sure to win) rather than
the former even if the expected gain of the former one is
larger (i.e. −$100 · 0.5+ $200 · 0.5 = $50 > $49). To capture
such violations, Kahneman and Tversky presented a model
of utility under risk called CPT, which extends traditional
utility formulation to take into account humans’ behavior on
choices [10], [4]. The idea of CPT is to tweak the functions of
valuation and probability so that they better explain people’s
choices under risk. In CPT, players evaluate the following
equation rather than Eq. (3).

Np∑
j=1

w

(
1

Np

)
v(πj), (9)

where v(·) is a value function and w(·) are decision weights,
respectively. In CPT, some characteristics are involved in
designing v(x), namely (i) reference dependence, (ii) loss

aversion and (iii) diminishing sensitivity. Reference depen-
dence means that players care about gains and losses that
are relative to some point rather than to the absolute amount
of their wealth. Loss aversion means that players are more
sensitive to losses than to gains, i.e. |v(x)| < |v(−x)| for
x ≥ 0. Diminishing sensitivity means that players tend to be
risk-averse in the region of gains but be risk-loving in the
region of losses. To capture these characteristics, the value
function proposed by Kahneman and Tversky [10], [4], and
others (e.g [13]) is as follows:

v(x) =

{
xα, if x ≥ 0,

−λ(−x)α, otherwise.
(10)

CPT also captures humans’ behavior that they tend to
overweight unlikely occurring events (i.e. the tails of distribu-
tion). Specifically, pj is now transformed, through a function
w(·), into w(pj). Tversky and Kahneman’s weighting function,
wTK(p), is expressed as follows.

wTK(p) =
pδ

(pδ + (1− p)δ)1/δ
. (11)

Another example of probability weighting functions includes
Prelec’s as expressed as Eq. (12).

wPrelec(p) = − exp{−β(− ln p)α}. (12)

Figures 2(a) and (b) show how v(x) and w(p) transform the
values of x and p, respectively. As can be seen from Fig. 2(a),
a utility is concave when x ≥ 0 and convex in x < 0 and
|v(x)| < |v(−x)| for x ≥ 0. Similarly, w(p) captures human’s
tendency to overweight the possibilities of unlikely happening
events, while no weighting is considered in the EUT.

C. Comparison of Mechanisms

With Eqs. (2), (9), (10) and (11) as well as Pj of the
aforementioned mechanisms (i.e. from Eq. (5) to Eq. (8))
we can compare participant’s utilities and choose the most
promising mechanism for an operator. In this regard, we need
to determine a value function, probability weighting function
and their parameters. The parameters of these functions (e.g.
Eqs. (10) and (11)) are often determined via social experiments
(e.g. [4], [13], [14], [15]). Subjects are recruited to join
experiments, and the parameters are inferred from the exper-
iments’ results. Hence, when using the parameters obtained
in this way, we need to make sure that the games in their
experiments should be similar to those at hand. In this paper,
we compare (i) Tversky and Kahneman’s functions and (ii)
Prelec’s functions with the parameters inferred by their past
social experiments (e.g. [4], [13]). The reason of the choice of
these two is that they have well used to explain the behavior
of lotteries in the past (e.g. [7]).

V. PERFORMANCE EVALUATION

We compare the mechanisms described in the previous
section, namely (i) winner-take-all, (ii) top-k (linear weight-
ing), (iii) top-k (exponential weighting) and (iv) three-band
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Fig. 2. The value function v(x) and probability weighting functions w(p)
proposed by Tversky and Kahneman (α = 0.88, λ = 2.25 for v(x), and
δ = 0.65 for wTK(p)) [4] and by Prelec (α = 0.65, β = 1 for their
wPrelec(p)) [13].

mechanisms, in terms of participants’ utility under the CPT
assumption. We also clarify how r and f affect the operator’s
profit and how profitable each mechanism is. Regarding f , we
assume cardinal values (e.g. 1, 2) rather than actual currencies
for generality. A positive utility means that a mechanism is
attractive to participants, and they thus should join, and vice
versa. Furthermore, the higher utility the more attractive to
participants. We determine the optimal ks for the two top-k
mechanisms (i.e. linear weighting and exponential weighting
described in Sections IV-A2 and IV-A3) and use them for the
overall comparison. Our codes are available at our GitHub
repository.5

5https://github.com/kentaroh-toyoda/Design-of-Profitable-Crypto-Lottery-
Mechanisms-with-Prospect-Theory
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Fig. 3. Effect of k in linear and exponential weighting. We used Tversky and
Kahneman’s value function v(x) with α = 0.88, λ = 2.25 and probability
weighting function wTK(p) with δ = 0.65 [4], r = 10%, and f = 1.

A. Optimal k

We determine the optimal k for the two top-k mechanisms
(i.e. linear weighting and exponential weighting described
in Sections IV-A2 and IV-A3). Here, we used Tversky and
Kahneman’s value function v(x) with α = 0.88, λ = 2.25
and probability weighting function wTK(p) with δ = 0.65 [4],
r = 10%, and f = 1. Np and k were varied from 1 to 200 and
from 1% to 100%, respectively. Fig. 3a shows the result. As
can be seen from this figure, for both weighting methods, when
k is high (i.e. when most of participants are expected to receive
prizes but small amounts), it is less appealing to them. Simi-
larly, when k is extremely low (i.e. when only few participants
receive prizes), it is also less appealing. Hence, there should
be somewhere that maximizes participants’ utilities. We find
such an optimal point by averaging utilities over the number
of participants. Fig. 3b shows average utilities over Np versus
k. We can see from this figure that there are optimal points on

https://github.com/kentaroh-toyoda/Design-of-Profitable-Crypto-Lottery-Mechanisms-with-Prospect-Theory
https://github.com/kentaroh-toyoda/Design-of-Profitable-Crypto-Lottery-Mechanisms-with-Prospect-Theory
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both linear weighting (k = 16%) and exponential weighting
(k = 6%). We use these ks for the following evaluation.

B. Comparison of Mechanisms

We clarify the relationships between utility and number of
participants, Np, as well as different assumptions (i.e. value
and probability weighting functions, CPT versus EUT).6 As
mentioned in the previous section, we compare (i) Tversky
and Kahneman’s value function v(x) with α = 0.88, λ = 2.25
and probability weighting function wTK(p) with δ = 0.65 [4]
and (ii) Prelec’s (the same v(x) and wPrelec(p) with α =
0.65, β = 1) [13], where these parameters were inferred by
their past social experiments (e.g. [4], [13]). We also assumed
r = 10% and f = 1 and varied Np from 1 to 200. The
optimal parameters of k in the two top-k mechanisms were
used, namely k = 16% and k = 6% for linear and exponential
weighting, respectively.

Fig. 4 shows the comparison of utilities by different mech-
anisms and assumptions. We can clearly see the difference
of utilities under the CPT assumption. The top-16% (linear
weighting) is the most appealing mechanism for participants in
the sense that (i) the minimum number of participants required
to achieve a positive utility (i.e. 21 required for the top-16%
(linear weighting), 34 for the top-6% (exponential weighting),
53 for the winner-take-all, and 97 for the three bands) and that
(ii) it achieves higher utilities than the others. From this result,
we can say that the winner-take-all and top-6% (exponential
weighting) are too risky and less appealing to participants and
that the top-16% (linear weighting) mechanism provides a
good balance of risk and return. However, we can only say
that it is the best among the four mechanisms tested; it is
an open question to find the theoretically optimal mechanism.
Likewise, although our findings are true against the value and

6Although we proved that the expected utility of risk neutral participants
are always negative, we plot it for reference purposes.

10-2

10-1

100

101

102

103

104

0 50 100 150 200
Number of participants

U
tili

ty

1 10 100 1,000 10,000

Fig. 5. Effect of f .

probability weighting functions tested, it may not hold true to
other functions.

C. Effect of f

We clarify how f affects participants’ willingness to join
the game. Fig. 5 shows the log-scale comparison of utilities
when f is varied from 1 to 10,000. We used Tversky and Kah-
neman’s functions with the same parameters and the top-16%
(linear weighting) mechanism for this evaluation. Regardless
of the values of f , utilities are positive when Np ≥ 21. We
can see from Fig. 5 that the higher the entry fee the more
appealing to participants. In our game, as accumulated entry
fees are distributed to top-16% after an operator takes r of
it, the more entry fee would be appreciated by participants.
However, it is still an open question that this still holds true
even if we replace f with a real fiat or crypto currency. For
instance, is f = 1 BTC, which is around US$30,000 at the
time of writing this paper, more appealing than f = 0.01
BTC? Although this seems too risky, the proposed approach
cannot explain this well yet.

D. Effect of r

We then clarify how r affects participants’ utilities. Fig. 6
shows the utilities when r is varied from 5% to 90%. As
can be seen from this figure, the higher r, the less appealing
to participants, which is quite understandable as participants
will receive less amount of prize when r is high. For extreme
cases (e.g. r = 90%), utility keeps decreasing even if Np
increases. Furthermore, the higher r the more participants are
required for utility to become positive. For instance, only 19
participants are required for r = 5%, whereas 45 are required
for r = 30%.

E. Operator’s Expected Profit

Finally, we compare operator’s expected profits when r and
f are varied. We use the same setting as Section V-D except
that Np, r and f are varied from 1 to 50, from 5% to 20% and



-2

-1

0

1

2

0 50 100 150 200
Number of participants

U
tili

ty

5% 10% 30% 50% 70% 90%

Fig. 6. Effect of r.

0

5

10

15

20

0 10 20 30 40 50
Number of participants

O
pe

ra
to

r's
 e

xp
ec

te
d 

pr
ofi

t

r 5% 10% 20% f 1 2

Fig. 7. Expected Operator’s profit.

from 1 to 2, respectively. Fig. 7 shows the operator’s expected
profits. Note that some results correspond at some regions. For
instance, the results of (r = 5%, f = 2) and (r = 10%, f = 1)
correspond when Np ≥ 21. From the operator’s perspective,
r should not be too small to increase profitability. However,
the higher r, the more participants should join for a game to
be appealing. In this regard, one of the operator’s strategies is
to infer the expected number of participants somehow and to
set r accordingly. For instance, if 30 participants may join a
game, then r should be less than 20% as this is the maximum
r.

F. Discussion

The contributions of our method are that it provides a
reasonable way of designing crypto lottery mechanisms and
comparing them in terms of utilities as well as profits. Besides,
the method discussed is generic. We believe that it can be ap-
plied to other use-cases such as design and analysis of optimal

blockchain mining reward and token-based applications such
as crowdsourcing and data mining platforms.

On the flip side, we are aware of the following limitations
which remain open questions.

• Obtained results and conclusions may be biased by a
chosen value function, probability weighting function and
their parameters. It is necessary to check if the conditions
of experiments where such parameters are derived are
similar to the problems at hand.

• An operator must manually come up with possible mech-
anisms, and thus the truly optimal mechanism may be
missed.

• The model of CPT used in this paper does not explain
well how fiat or crypto currency f affects participants’
willingness to join. Is f = 1 BTC more appealing than
f = 0.01 BTC even if the former is too risky?

• This analysis only focuses on a single game. However,
it may be necessary to analyze mechanisms and utility
when a game is repeated as in [7].

• More factors may need to be considered in modeling
participants’ behavior. For instance, there is a report that
risk attitudes differ by countries and depend not only on
economic conditions but also on cultural factors [16].

VI. CONCLUSIONS

We have proposed a method of designing the mechanism
of lottery games with an example of crypto-based lottery
game. The key idea is to incorporate behavioral economics
into mechanism design to better predict participants’ will-
ingness to join a game and operator’s profitability based on
utility analysis. In particular, we leveraged CPT to model
participants’ behavior. We proposed four mechanisms for the
game and thoroughly evaluated them in terms of utility and
profit by varying parameters. Our evaluation suggests that
the top-k (linear weighting), which distributes prizes to top-
k participants of a game and the amount of prizes linearly
declines with their ranks, is the best mechanism among the
four mechanisms. We have also clarified the relationships
between utility and the number of participants under some
assumptions (e.g. how the parameters of how much an operator
takes and entry fee affect utilities and the minimum number
of participants required to make a game appealing).

Our method has some contributions in designing a crypto-
based lottery game, however, there is some room for improve-
ment. For instance, ours do not explain well that utilities keep
increasing even if a game is too risky to join when an entry fee
is too high. We will tackle these issues and provide a better
mechanism design method.
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